The segregation potential of a freezing soil

1981 ◽  
Vol 18 (4) ◽  
pp. 482-491 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Norbert R. Morgenstern

In previous work it has been shown that when a soil sample freezes in a one-dimensional manner under different cold-side step temperatures but the same warm-side temperature, at the formation of the final ice lens the water intake flux is proportional to the temperature gradient across the frozen fringe. The constant of proportionality has been called the segregation potential and this linear relation constitutes the coupling between heat and mass flow in a general theory of frost heave. This paper shows experimentally that the segregation potential is also a function of the average suction in the frozen fringe which is readily expressed in terms of the suction at the frost front. As a result it is also shown that measured water intake flux during freezing is dependent on the freezing path used to initiate the final ice lens. A thermodynamic explanation of the dependence of segregation potential on suction in the frozen fringe is also offered.

1982 ◽  
Vol 19 (3) ◽  
pp. 250-259 ◽  
Author(s):  
J.-M. Konrad ◽  
N. R. Morgenstern

Previous studies have demonstrated that, close to steady-state conditions, the ratio of the water intake velocity to the temperature gradient across the frozen fringe, called the segregation potential, is an important property characterizing a freezing soil. Under the more general conditions of transient freezing it is shown that the freezing characteristics of a given soil under zero applied load are defined by the segregation potential, the suction at the frozen–unfrozen interface, and the rate of cooling of the frozen fringe. These parameters form a relationship called the characteristic frost heave surface that can be used to predict mass transfer during the freezing of fine-grained soils. Examples of freezing tests conducted under various conditions are reproduced numerically to illustrate the fundamental character of this surface.


1991 ◽  
Vol 28 (6) ◽  
pp. 843-859 ◽  
Author(s):  
J. F. (Derick) Nixon

The existing segregation potential (SP) method for frost heave prediction in soils is semiempirical in nature and does not explicitly predict the relationship between heave rate, temperature gradient, and other more fundamental soil properties. The SP method assumes that the heave rate is directly related to the temperature gradient at the frost front but acknowledges that the SP parameter is dependent on pressure, suction at the frost front, cooling rate, soil type, and so forth. This paper extends and modifies an approximate analytical technique of Gilpin and accounts for the effects of distributed phase change within the freezing fringe in both the head- and mass-transfer components of the formulation. The approach requires as input a relationship between frozen hydraulic conductivity and temperature and predicts the discrete location of each ice lens within the freezing soil. The solution can be carried out quickly on a microcomputer to obtain the heave, suction at the frost front, ice lens temperature, and other results of interest with time. Furthermore, the discrete ice lens method predicts the effects of changing overburden pressure on the predicted heave rate. A method of extracting input parameters for the discrete ice lens procedure from a series of frost heave tests is proposed. The discrete ice theory has been tested and calibrated against well-documented frost heave test results in the literature, and very encouraging agreement between prediction and observation has been obtained. Key words: frost heave, discrete ice lens, segregation potential, hydraulic conductivity of frozen soil, freezing soil.


1981 ◽  
Vol 18 (4) ◽  
pp. 583-585 ◽  
Author(s):  
Edward Penner

Results are presented over a wide range of soil textures supporting the linear relation between the logarithm of frost heave rate and the cold-side temperature – overburden pressure ratio proposed by Penner and Ueda. The relation is simple to determine experimentally, permits heave predictions at various other temperature and pressure conditions for engineering purposes, and allows soil frost susceptibility comparisons to be made with the results determined by other laboratories.


2013 ◽  
Vol 353-356 ◽  
pp. 68-73
Author(s):  
Xian Feng Zhu ◽  
Xiang Yang Wei ◽  
Xing Huang ◽  
Yun Peng Zhang

Experimental studies were conducted on unidirectional and multidirectional freezing of artificial soils in a rectangular cavity. The ice lenses were observed through transparent plexiglass plate. Temperature gradients in soil specimen were obtained during freezing process. The experimental results indicated that the temperature gradient may change the shape of ice lenses. The amount of frost heave of multidirectional freezing was less than unidirectional freezing, so multidirectional freezing mode is helpful to restrain vertical frost heave.


2020 ◽  
Vol 10 (21) ◽  
pp. 7753
Author(s):  
Lin Geng ◽  
Shengyi Cong ◽  
Jun Luo ◽  
Xianzhang Ling ◽  
Xiuli Du ◽  
...  

In analyzing frost heave, researchers often simplify the compressive modulus of freezing soil by considering it as a constant or only as a function of temperature. However, it is a critical parameter characterizing the stress–strain behavior of soil and a variable that is influenced by many other parameters. Hence, herein several one-dimensional freezing experiments are conducted on silty clay in an open system subjected to multistage freezing by considering the compressive modulus as a variable. First, freezing soil under multistage freezing is divided into several layers according to the frozen fringe theory. Then, the correlation between the freezing rate and temperature gradient within each freezing soil layer is investigated. Takashi’s equation for frost heave analysis is modified to extend its application conditions by replacing its freezing rate term with a temperature gradient term. A mechanical model for the stress–strain behavior of freezing soil under the action of frost heave is derived within the theoretical framework of nonlinear elasticity, in which a method for determining the compressive modulus of freezing soil with temperature gradient, overburden pressure, and cooling temperature variables is proposed. This study further enhances our understanding of the typical mechanical behavior of saturated freezing silty clay under frost heave action.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Ming ◽  
Dong-qing Li

For the construction in cold regions, frost heave and thaw settlement are the two factors which must be taken care of. Considered that a saturated soil column was subjected to an overburden pressure to model the ice lens growing process. A typical process, which coupled water, heat, and stress that happened in a saturated freezing soil column, was simulated by the finite element software. We did the numerical simulation under the same conditions as the experiment tests and then compared the results from temperature, frost heave, frozen structure, water content, and water intake. Result shows that the simulation results match well with the experimental results, and the correctness of the mathematical model is validated. On that basis, frost heave amount under different conditions by changing the temperature boundary and loading boundary is obtained. The frost heave has an optimum temperature gradient. Under the optimum value, the frost heave amount increases with increasing temperature gradient. Above the optimum value, frost heave decreases with increasing temperature gradient. Increasing the overburden pressure, frost heave amount always decreases. These results can provide references for the constrictions in cold regions.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2418
Author(s):  
Xiyan Zhang ◽  
Yu Sheng ◽  
Long Huang ◽  
Xubin Huang ◽  
Binbin He

Previous studies have shown that an accurate prediction of frost heaves largely depends on the pore water pressure and hydraulic conductivity of frozen fringes, which are difficult to determine. The segregation potential model can avoid this problem; however, the conventional segregation potential is considered to be approximately unchanged at a steady state and only valid in an open system without dehydration in the unfrozen zone. Based on Darcy’s law and the conventional segregation potential, the segregation potential was expressed as a function of the pore water pressure at the base of the ice lens, the pore water pressure at the freezing front, the freezing temperature, the segregation freezing temperature and the hydraulic conductivity of the frozen fringe. This expression indicates that the segregation potential under quasi-steady-state conditions is not a constant in a closed system, since the pore water pressure at the freezing front varies with the freezing time owing to the dehydration of the unfrozen zone, and that when the pore water pressure at the freezing front is equal to that at the base of the ice lens, the water migration and frost heave will be terminated. To analyze the possibility of applying the segregation potential model in a closed system, a series of one-sided frost heave tests under external pressure in a closed system were carried out in a laboratory, and the existing frost heaving test data from the literature were also analyzed. The results indicate that the calculated frost heave was close to the tested data, which shows the applicability of the model in a closed system. In addition, the results show the rationality of calculating the segregation potential from the frost heaving test by comparing the potential with that calculated from the numerical simulation results. This study attempted to extend the segregation potential model to freezing soil in a closed system and is significant to the study of frost heaves.


Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


Sign in / Sign up

Export Citation Format

Share Document