Analysis of bearing capacity of rigid piles under eccentric and inclined loads

1986 ◽  
Vol 23 (2) ◽  
pp. 127-131 ◽  
Author(s):  
T. Koumoto ◽  
G. G. Meyerhof ◽  
V. V. R. N. Sastry

An investigation is made of the eccentricity and inclination factors for estimating the ultimate bearing capacity of rigid single piles in homogeneous soils under eccentric and inclined loads. For combined eccentric inclined loads the corresponding theoretical factors are obtained by combining inclination factors and eccentricity factors, which are derived from extending the theory of inclination factors for shallow strip footings. The theoretical values of inclination factors, eccentricity factors, and eccentric inclination factors are compared with some experimental results of model piles in sand and clay. Key words: bearing capacity, clay, eccentricity factors, eccentric inclination factors, inclination factors, rigid piles, sand, ultimate load.

1995 ◽  
Vol 32 (2) ◽  
pp. 204-222 ◽  
Author(s):  
G. G. Meyerhof

Previous analyses of the ultimate resistance and displacements of rigid piles under lateral loads and moments have been extended to the general case of eccentric and inclined loads on flexible piles by using the concept of effective embedment depths of equivalent rigid piles. Recent research on the behaviour of large model tests on instrumented rigid and flexible piles under eccentric and inclined loads in sand, clay, and layered soil is summarized. Reasonable agreement is found between observed and predicted behaviour. The proposed method of analysis is also supported by comparison with the results of many field case records of single piles and large pile groups under lateral loads indifferent types of soils. Key words : bearing capacity, displacement, eccentric loads, inclined loads, layered soil, pile.


1993 ◽  
Vol 30 (3) ◽  
pp. 545-549 ◽  
Author(s):  
M.T. Omar ◽  
B.M. Das ◽  
V.K. Puri ◽  
S.C. Yen

Laboratory model test results for the ultimate bearing capacity of strip and square foundations supported by sand reinforced with geogrid layers have been presented. Based on the model test results, the critical depth of reinforcement and the dimensions of the geogrid layers for mobilizing the maximum bearing-capacity ratio have been determined and compared. Key words : bearing capacity, geogrid, model test, reinforced sand, shallow foundation.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1227-1233
Author(s):  
Nian Chun Xu ◽  
Wen Jing Xia ◽  
Tong Qing Wu

There exists horizontal friction besides vertically pressure at the foundations' underside. Considering the effect of friction on the expansion of plastic zones in subgrade is needed to accurately evaluate subgrade’s safety. A strip footing is chose as the research object. Assuming the distribution of friction at the strip footing’s underside is two symmetrical triangles. With the help of Flamant formula and via definite integration, the formulas of stress in subgrade induced by the friction are got. Setting the Coulomb-Mohr strength theory as the yielding criterion for the subgrade soil, through the comparison among the different friction angles in expansion characteristics of plastic zones, the research object is achieved. Two major conclusions as following: (1) the friction makes the plastic zones appear in advance, the initial critical load get smaller with the friction get bigger; (2) the plastic zones get broader in horizontal direction under the action of the friction, this makes the plastic zones in two sides beneath the footing run-through later and so enhances the subgrade’s ultimate bearing capacity.


1978 ◽  
Vol 15 (4) ◽  
pp. 565-572 ◽  
Author(s):  
G. G. Meyerhof ◽  
A. M. Hanna

The ultimate bearing capacity of footings resting on subsoils consisting of two layers has been investigated for the cases of a dense or stiff layer overlying a weak deposit, and a loose or soft layer overlying a firm deposit. The analyses of different modes of soil failure are compared with the results of model tests on circular and strip footings on layered sand and clay soils.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chuandong Shen ◽  
Yifan Song ◽  
Lei Yan ◽  
Yuan Li ◽  
Xiaowei Ma ◽  
...  

Curved twin I-girder composite bridge (TGCB) is becoming popular in Chinese highway bridge building. To study its ultimate bearing behavior, in this paper, one 1 : 5 scale intact model of a two-span curved continuous TGCB was tested to failure to evaluate its safety reserve and ductility. Afterwards, based on the experimental result, 3D FE models were developed and validated. At last, using the validated 3D FE models, the effect of construction scheme, radius of curvature, yield strength of steel, concrete compressive strength, crossbeams, and bottom lateral bracings on the ultimate bearing capacity were examined. The experimental results showed that the ultimate load (Pu) is approximate 13.6 times the service equivalent load. The cracking load and yielding load are approximately 0.12 and 0.47 Pu, respectively. The ductility coefficients are 4.06∼4.40. These above may indicate that the TGCB designed according to Chinese codes has good safety reserve and ductility. From parameter analysis results, it was concluded that the TGCB with full-support construction scheme has larger yield load and ultimate load compared with the one with erecting machine construction scheme. On the other hand, the ultimate bearing capacity reduces nonlinearly with the increase of curvature. Besides, the yield strength of steel, crossbeams, and bottom lateral bracings has a significant effect on the ultimate bearing capacity of curved TGCB. And the smaller the radius of curvature, the more obvious the effect of the latter two factors is. Unfortunately, it is unwise to continuous to improve the ultimate load by increasing the grade of steel for the TGCB when steel grade exceeds Q390. Moreover, in consideration of the big difference in bearing capacity between the inner girder and outer girder of the TGCB with small radius of curvature as well as the economy, it is suggested that the inner and outer steel girders of that TGCB should be designed differently.


2020 ◽  
Vol 165 ◽  
pp. 04015
Author(s):  
Li Jia ◽  
Liu Tao ◽  
Huang Hong ◽  
Jiang Jian ◽  
Huang Zhi

This paper proposes the method of enlarging section combined with prestressed tendon (Enlarging Section-Prestress Method), which has the advantages of both increasing section and external prestressing, such as reducing section height, the prestressing tendon do not rust easily, and the appearance is beautiful. Model tests were carried out, two rectangular beam models with the same section and length were made, one was reinforced by Enlarging Section-Prestress Method, and no reinforced action was taken as a control. Two points of concentrated load were applied to the model beams, and the two tests were compared in terms of deflection-load characteristics and crack development. The experimental results show that the Enlarging Section-Prestress Method is effective, which improved the ultimate bearing capacity of the beam obviously, and reduced the deflection of the trabecular beam.


Sign in / Sign up

Export Citation Format

Share Document