FREE CONVECTION FROM A WINDOW GLAZING WITH A VENETIAN BLIND: NUMERICAL MODEL DEVELOPMENT

1999 ◽  
Vol 23 (1B) ◽  
pp. 159-172 ◽  
Author(s):  
J. Phillips ◽  
D. Naylor ◽  
S.J. Harrison ◽  
P.H. Oosthuizen

The present numerical study examines the influence of horizontal louvres (Venetian blinds) on the convective heat transfer from a vertical isothermal surface. A steady, laminar, two dimensional, conjugate conduction/convection solution to this problem has been obtained using the finite element method. Detailed comparisons are made with temperature field and local Nusselt number data obtained using a Mach-Zehnder Interferometer. Also, numerically predicted stream function contours are compared to streamlines obtained from flow visualization experiments. All results are obtained for Pr = 0.7, as the intended application of this study is for air. Results show that as the blind tip-to-plate spacing decreases, the difference between numerical solutions and experimental results increase. This suggests that radiation heat transfer may be a significant factor at smaller blind spacings.

2003 ◽  
Vol 125 (4) ◽  
pp. 760-764 ◽  
Author(s):  
M. Huang ◽  
F. C. Lai

Numerical results are presented for heat transfer enhancement using electric field in forced convection in a horizontal channel. The main objective of the present study is to verify the assumption that is commonly used in the numerical study of this kind of problem, which assumes that the electric field can modify the flow field but not vice versa (i.e., the so-called one-way coupling). To this end, numerical solutions are obtained for a wide range of governing parameters (V0=10, 12.5, 15 and 17.5 kV as well as ui=0.0759 to 1.2144 m/s) using both one-way and two-way couplings. The results obtained, in terms of the flow, temperature, and electric fields as well as the heat transfer enhancement, are thoroughly examined. Since the difference in the results obtained by two approaches is insignificant, it is concluded that the assumption of one-way coupling is valid for the problem considered.


1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


1983 ◽  
Vol 105 (2) ◽  
pp. 389-397 ◽  
Author(s):  
M. Renksizbulut ◽  
M. C. Yuen

Numerical solutions for high-temperature air flowing past water and methanol droplets and solid spheres, and superheated steam flowing past water droplets were obtained in the Reynolds number range of 10 to 100. The coupled momentum, energy, and specie continuity equations of variable thermophysical properties were solved using finite difference techniques. The numerical results of heat transfer and total drag agree well with existing experimental data. Mass transfer decreases friction drag significantly but at the same time increases pressure drag by almost an equal amount. The net effect is that the standard drag curve for solid spheres can be used for evaporating droplets provided the density is the free stream density and the viscosity of the vapor mixture is evaluated at an appropriate reference temperature and concentration. Both the mass efflux and variable properties decrease heat transfer rates to the droplets.


2002 ◽  
Vol 124 (6) ◽  
pp. 1078-1087 ◽  
Author(s):  
M. Collins ◽  
S. J. Harrison ◽  
D. Naylor ◽  
P. H. Oosthuizen

The present study examines the influence of heated, horizontal, and rotateable louvers on the convective heat transfer from a heated or cooled vertical isothermal surface. The system represents an irradiated Venetian blind adjacent to the indoor surface of a window. Detailed temperature field and local surface flux data were obtained using a Mach-Zehnder Interferometer for two window temperatures (warm and cool compared to ambient) and irradiation levels, two louver to plate spacings, and three louver angles. The results have been compared to a steady, laminar, two-dimensional, conjugate conduction/convection/radiation finite element model of this problem. The effect of the heated louvers on the heat transfer rate from the plate surface has been demonstrated and the results of the numerical study have been validated.


Author(s):  
Meriem Amoura ◽  
Noureddine Zeraibi

In this paper, we present a numerical study of the flow characteristics and heat transfer mechanism of a non-Newtonian fluid in an annular space between two coaxial rotating cylinders taking into account the effect of viscous dissipation. The Carreau stress-strain relation was adopted to model the rheological fluid behavior. The problem is studied when the heated inner cylinder rotates around the common axis with constant angular velocity and the cooled outer cylinder is at the rest. The horizontal endplates are assumed adiabatic. In-house code which is based on a Galerkin mixed finite element is developed to obtain numerical solutions of the complete governing equations and associated boundary conditions and is validated with the results reported in the literature. It is found that five parameters can describe the problem under consideration, the Reynolds number (Re), the Grashof number (Gr), the index of structure (n), Weissenberg number (We) and the Eckert number (Ec). The velocity, temperature and stream function distributions and the local Nusselt number variations are drawn for different dimensionless groups.


1990 ◽  
Vol 112 (2) ◽  
pp. 370-378 ◽  
Author(s):  
Y. Le Peutrec ◽  
G. Lauriat

Numerical solutions are obtained for fluid flows and heat transfer rates for three-dimensional natural convection in rectangular enclosures. The effects of heat losses at the conducting side walls are investigated. The problem is related to the design of cavities suitable for visualizing the flow field. The computations cover Rayleigh numbers from 103 to 107 and the thermal conductance of side walls ranging from adiabatic to commonly used glazed walls. The effect of the difference between the ambient temperature and the average temperature of the two isothermal walls is discussed for both air and water-filled enclosures. The results reported in the paper allow quantitative evaluations of the effects of heat losses to the surroundings, which are important considerations in the design of a test cell.


Sign in / Sign up

Export Citation Format

Share Document