Heat Transfer From an Isothermal Vertical Surface With Adjacent Heated Horizontal Louvers: Validation

2002 ◽  
Vol 124 (6) ◽  
pp. 1078-1087 ◽  
Author(s):  
M. Collins ◽  
S. J. Harrison ◽  
D. Naylor ◽  
P. H. Oosthuizen

The present study examines the influence of heated, horizontal, and rotateable louvers on the convective heat transfer from a heated or cooled vertical isothermal surface. The system represents an irradiated Venetian blind adjacent to the indoor surface of a window. Detailed temperature field and local surface flux data were obtained using a Mach-Zehnder Interferometer for two window temperatures (warm and cool compared to ambient) and irradiation levels, two louver to plate spacings, and three louver angles. The results have been compared to a steady, laminar, two-dimensional, conjugate conduction/convection/radiation finite element model of this problem. The effect of the heated louvers on the heat transfer rate from the plate surface has been demonstrated and the results of the numerical study have been validated.

2002 ◽  
Vol 124 (6) ◽  
pp. 1072-1077 ◽  
Author(s):  
M. Collins ◽  
S. J. Harrison ◽  
D. Naylor ◽  
P. H. Oosthuizen

The present study examines the influence of heated, horizontal, and rotatable louvers on the convective and radiative heat transfer from a heated or cooled vertical isothermal surface. The system represents an irradiated Venetian blind adjacent to the indoor surface of a window. Detailed heat transfer results were obtained using a steady, laminar, two-dimensional, conjugate conduction/convection/radiation finite element model for two window temperatures (warm and cool compared to ambient) and irradiation levels, two louver to surface spacings, and three louver angles. The effect of the heated louvers on the heat transfer rate from the surface has been demonstrated.


2000 ◽  
Author(s):  
M. Collins ◽  
S. J. Harrison ◽  
P. H. Oosthuizen ◽  
D. Naylor

Abstract The present numerical study examines the influence of heated, horizontal, and rotateable louvers on the convective and radiative heat transfer from a hot or cold vertical isothermal surface. The system models absorption of solar energy in a Venetian blind adjacent to the indoor surface of a window. Building on previous analyses, a steady, laminar, two-dimensional, conjugate conduction / convection / radiation model of this problem has been developed, and solutions have been obtained using the finite element method. Validation of the model against existing solutions has been undertaken. Results were obtained for two window temperatures (warm and cool compared to ambient), two louver to plate spacings, and three louver angles. The results clearly demonstrate the effect of the model variables on heat transfer from the plate surface. With few exceptions, steady periodicity along the plate was clearly demonstrated. More importantly, increased independence of the results from the louver angle as louver to plate distance increased was demonstrated.


Author(s):  
Patrick H. Oosthuizen ◽  
J. T. Paul

Top Down – Bottom Up blinds have become quite popular in recent times. However the effects of such blind systems on the convective heat transfer from the window to the surrounding room have not been extensively studied and the effect of solar irradiation of the blind on the window heat transfer has not received significant attention. The purpose of the present work was therefore to numerically investigate the effect of solar irradiation of Top Down – Bottom Up slatted blinds on this convective heat transfer. An approximate model of the window-blind system has been adopted. The solar radiation falling on the blinds is assumed to produce a uniform rate of heat generation in the blind. The Boussinesq approximation has been used. Radiant heat transfer effects have been neglected. Conditions under which laminar, transitional and turbulent flows occur have been considered. The main emphasis is on the effect of the magnitude of the irradiation and of the size of the blind openings at the top and bottom of the window on the convective heat transfer rate from the window to the room.


Author(s):  
Hiroshi Suzuki ◽  
Shinpei Maeda ◽  
Yoshiyuki Komoda

Two-dimensional numerical computations have been performed in order to investigate the development characteristics of flow and thermal field in a flow between parallel plates swept by a visco-elastic fluid. In the present study, the effect of the cavity number in the domain and of Reynolds number was focused on when the geometric parameters were set constant. From the results, it is found that the flow penetration into the cavities effectively causes the heat transfer augmentation in the cavities in any cavity region compared with that of water case. It is also found that the development of thermal field in cases of the present visco-elastic fluid is quicker compared with that of water cases. The present heat transfer augmentation technique using Barus effect of a visco-elastic fluid is effective in the range of low Reynolds number.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110391
Author(s):  
Ben Abdelmlek Khaoula ◽  
Ben Nejma Fayçal

This paper deals with a numerical study of mixed convection heat transfer in horizontal eccentric annulus. The inner cylinder is supposed hot and rotating, however the outer one is kept cold and motionless. The numerical problem was solved using COMSOL Multiphysics® which is based on finite element method. The resolution of the partial differential equations was conducted through an implicit scheme with the use of the damped Newton’s method. The present numerical analysis concerns the effect of eccentricity, rotation speed and Rayleigh number on the flow patterns, heat transfer rate, and energy efficiency of the process. It was found that the heat transfer rate increases with the increase of Rayleigh number. In addition, the heat transfer rate drops with the increase of rotation speed. Finally, we have demonstrated that maximum energy efficiency is achieved not only with higher Rayleigh number but also it is maximum with small eccentricity.


2021 ◽  
Author(s):  
Tony Avedissian

The free convective heat transfer in a double-glazed window with a between-pane Venetian blind has been studied numerically. The model geometry consists of a two-dimensional vertical cavity with a set of internal slats, centred between the glazings. Approximately 700 computational fluid dynamic solutions were conducted, including a grid sensitivity study. A wide set of geometrical and thermo-physical conditions was considered. Blind width to cavity width ratios of 0.5, 0.65, 0.8, and 0.9 were studied, along with three slat angles, 0º (fully open, +/- 45º (partially open), and 75º (closed). The blind to fluid thermal conductivity ratio was set to 15 and 4600. Cavity aspects of 20, 40, and 60, were examined over a Rayleigh number range of 10 to 10⁵, with the Prandtl number equal to 0.71. The resulting convective heat transfer data are presented in terms of average Nusselt numbers. Depending on the specific window/blind geometry, the solutions indicate that the blind can either reduce or enhance the convective heat transfer rate across the glazings. The present study does not consider radiation effects in the numerical solution. Therefore, a post-processing algorithm is presented that incorporates the convective and radiative influences, in order to determine the overall heat transfer rate across the window/blind system.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


Author(s):  
T. Povey ◽  
K. S. Chana ◽  
T. V. Jones ◽  
J. Hurrion

Pronounced non-uniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of end-wall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the affects of these temperature non-uniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimise the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and end-wall heat transfer rate for an HP nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two non-uniform temperature profiles. The temperature profiles were non-dimensionally similar to profiles measured in an engine. A difference of one half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and end-wall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualisation study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short duration engine-size turbine facility. Mach number, Reynolds number and gas-to-wall temperature ratios were correctly modelled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.


Sign in / Sign up

Export Citation Format

Share Document