ON THE DEVELOPMENT OF COMPRESSIBLE PSEUDO-STRAIN ENERGY DENSITY FUNCTION FOR HYPERELASTIC MATERIAL: EXPERIMENT, THEORY AND FEM

2005 ◽  
Vol 29 (3) ◽  
pp. 459-475
Author(s):  
Hamid Ghaemi ◽  
A. Spence ◽  
K. Behdinan

This study was carried out to develop a compressible pseudo-strain energy function that describes the mechanical behavior of rubber-like materials. The motivation for this work was two fold; first was to define a single-term strain energy function derived from constitutive equations that can describe the mechanical behavior of rubber-like materials and taking into account the coupling between principal stretches and the nearly incompressibility characteristic of elastomers. Second was to implement this strain energy function into the Finite Element Method (FEM) to study the suitability of the model in FEM. A one-term three-dimensional strain energy function based on the principal stretch ratios was proposed. The three dimensional constitutive function was then reduced to describe the behavior of rubber-like materials under biaxial and uniaxial loading condition based on the membrane theory. The work presented here was based on the decoupling of the strain density function into a deviatoric and a volumetric part. Using pure gum, GMS-SS-A40, uniaxial and equi-biaxial experiments were conducted employing different strain rate protocols. The material was assumed to be isotropic and homogenous. The experimental data from uniaxial and biaxial tests were used simultaneously to determine the material parameters of the proposed strain energy function. A GA curve fitting technique was utilized in the material parameter identification. The proposed strain energy function was compared to a few well-known strain energy functions as well as the experimental results. It was determined that the proposed strain energy function predicted the mechanical behavior of rubber-like material with greater accuracy as compared to other models both analytical and numerical results.

2019 ◽  
Vol 17 (01) ◽  
pp. 1844006
Author(s):  
Mahmood Jabareen ◽  
Yehonatan Pestes

The reliability of numerical simulations manifested the need for an accurate and robust finite element formulation. Therefore, in the present study, an eight node brick Cosserat point element ( CPE ) for the nonlinear dynamic analysis of three-dimensional (3D) solids including both thick and thin structures is developed. Within the present finite element formulation, a strain energy function is proposed and additively decoupled into two parts. One part is characterized by any 3D strain energy function, while the other part controls the response to inhomogeneous deformations. Several example problems are presented, which demonstrate the accuracy and the robustness of the developed CPE in modeling the dynamic response of elastic structures.


Author(s):  
Jose J. García ◽  
Christian Puttlitz

Models to represent the mechanical behavior of the annulus fibrosus are important tools to understand the biomechanics of the spine. Many hyperelastic constitutive equations have been proposed to simulate the mechanical behavior of the annulus that incorporate the anisotropic nature of the tissue. Recent approaches [1,2] have included terms into the energy function which take into account fiber-fiber and fiber-matrix interactions, leading to complex functions that cannot be readily implemented into commercial finite element codes for an efficient simulation of nonlinear realistic models of the spine (which are generally composed of 100,000+ degrees of freedom). An effort is undertaken here to test the capability of a relatively simple strain energy function [3] for the description of the annulus fibrosus. This function has already been shown to successfully represent the mechanical behavior of the arterial tissue and can be readily implemented into existing finite element codes.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2322
Author(s):  
Wei Wei ◽  
Yong Yuan ◽  
Xiaoyu Gao

Filled rubber has been extensively used in the repairing, retrofitting, and protecting of civil infrastructures due to its superior physical and mechanical properties. However, effects of large deformation and velocity impacts on the mechanical behavior of filled rubber are not well recognized, one of the major challenges in the past investigations is that the material exhibits significant nonlinearity and sensitivity to velocity. This paper presents a hyper-viscoelastic constitutive modeling and experimental study to capture both the hyperelastic and viscoelastic behaviors of filled rubber under large shear deformation and velocity impacts. Motivated by the micro-mechanism of filled rubber, the constitutive modeling consists of an equilibrium element in parallel with an improved Maxwell element to incorporate both nonlinear hyperelasticity and rate-dependent performance governed by the readjustment and rearrangement of molecular chains in the material. A new strain energy function is developed and the physical description of parameters in the strain energy function is highlighted. The Clausius-Duhem inequality is employed to consider the thermodynamic consistency of the model. Then, stress relaxation property and stress-strain response of filled rubber upon cyclic shear loading with different strain rates (ranging from 0.08 to 12.0 s−1) are experimentally studied, and some key observations are summarized. Subsequently, a “Gau-Poly” function is proposed based on the experimental data to describe the viscoelastic property of filled rubber versus strain and strain rate. Finally, stress-strain relationship and hysteretic area obtained from the experimental results were compared with the numerical results of the model, good agreement was achieved and the capacity of the model to accurately reproduce the mechanical behavior of filled rubber under a wide range of deformation and velocity impacts was verified.


Author(s):  
Philippe Tracqui ◽  
Jacques Ohayon

Isolated cardiac myocytes exhibit spontaneous patterns of rhythmic contraction, driven by intracellular calcium waves. In order to study the coupling between spatio-temporal calcium dynamics and cell contraction in large deformation regimes, a new strain-energy function, describing the influence of sarcomere length on the calcium-dependent generation of active intracellular stresses, is proposed. This strain-energy function includes anisotropic passive and active contributions that were first validated separately from experimental stress–strain curves and stress–sarcomere length curves, respectively. An extended validation of this formulation was then conducted by considering this strain-energy function as the core of an integrated mechano-chemical three-dimensional model of cardiac myocyte contraction, where autocatalytic intracellular calcium dynamics were described by a representative two-variable model able to generate realistic intracellular calcium waves similar to those observed experimentally. Finite-element simulations of the three-dimensional cell model, conducted for different intracellular locations of triggering calcium sparks, explained very satisfactorily, both qualitatively and quantitatively, the contraction patterns of cardiac myocytes observed by time-lapse videomicroscopy. This integrative approach of the mechano-chemical couplings driving cardiac myocyte contraction provides a comprehensive framework for analysing active stress regulation and associated mechano-transduction processes that contribute to the efficiency of cardiac cell contractility in both physiological and pathological contexts.


Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2021 ◽  
pp. 002199832110115
Author(s):  
Shaikbepari Mohmmed Khajamoinuddin ◽  
Aritra Chatterjee ◽  
MR Bhat ◽  
Dineshkumar Harursampath ◽  
Namrata Gundiah

We characterize the material properties of a woven, multi-layered, hyperelastic composite that is useful as an envelope material for high-altitude stratospheric airships and in the design of other large structures. The composite was fabricated by sandwiching a polyaramid Nomex® core, with good tensile strength, between polyimide Kapton® films with high dielectric constant, and cured with epoxy using a vacuum bagging technique. Uniaxial mechanical tests were used to stretch the individual materials and the composite to failure in the longitudinal and transverse directions respectively. The experimental data for Kapton® were fit to a five-parameter Yeoh form of nonlinear, hyperelastic and isotropic constitutive model. Image analysis of the Nomex® sheets, obtained using scanning electron microscopy, demonstrate two families of symmetrically oriented fibers at 69.3°± 7.4° and 129°± 5.3°. Stress-strain results for Nomex® were fit to a nonlinear and orthotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic model with two fiber families. We used a linear decomposition of the strain energy function for the composite, based on the individual strain energy functions for Kapton® and Nomex®, obtained using experimental results. A rule of mixtures approach, using volume fractions of individual constituents present in the composite during specimen fabrication, was used to formulate the strain energy function for the composite. Model results for the composite were in good agreement with experimental stress-strain data. Constitutive properties for woven composite materials, combining nonlinear elastic properties within a composite materials framework, are required in the design of laminated pretensioned structures for civil engineering and in aerospace applications.


Sign in / Sign up

Export Citation Format

Share Document