Optimal design of a hanging truss with shape memory alloy wires

2020 ◽  
Vol 44 (1) ◽  
pp. 95-107
Author(s):  
Xuan Zhang ◽  
Kazuyuki Hanahara ◽  
Yukio Tada ◽  
Zhiyong Pei ◽  
Zhe Li ◽  
...  

In this study, we discuss the dynamic problem of a column-type hanging truss structural system with pseudo-elastic shape memory alloy (SMA) bracing wires. In the case where the sectional area values of the bracing SMA wire members are small enough to be negligible, it is close to the situation where there are no braces. In the case where the sectional area values of the bracing SMA wire members are large enough not to be negligible, the vibration amplitude of the peripheral end apparatus is suppressed from the deformation point of view. In addition, energy attenuation efficiency is improved with larger sectional area values because of the hysteretic characteristic of SMA. Small sectional area values of the bracing SMA wire members near the support ceiling or peripheral end are beneficial to vibration transmission reduction. These findings indicate that the placement and sectional area values of SMA wire members are both significant from the viewpoint of suppression of influence of the support ceiling vibration of the hanging truss. In this study, we obtain the optimal sectional area values of the SMA wire bracing members for the objectives of vibration isolation and attenuation. We discuss influences of different vibration conditions on the optimal solutions.

2017 ◽  
Vol 7 (2) ◽  
pp. 6 ◽  
Author(s):  
Xuan Zhang ◽  
Kazuyuki Hanahara ◽  
Yukio Tada

In this study, we discuss the dynamics of a type of hanging truss structural system consisting of rigid and wire members, part of which are SMA (shape memory alloy) wires. This kind of truss structure has the capability of vibration isolation and absorption. Characteristics of zero compressive stiffness of wire members, SMA wire members and hanging configuration of the structure itself contribute to the effect of vibration isolation. The hysteretic loop of SMA wires plays a significant role in vibration attenuation. Mathematical models for this kind of dynamic problem are developed. Calculation process is introduced to take into account the mechanical characteristics of SMA and wire members. Dynamic characteristics are discussed; simultaneously, the effects of vibration isolation and attenuation have been confirmed. On the basis of the numerical calculations, advantages of combinations of various types of wire members, including the truss units having no bracing wires have been demonstrated. 


2005 ◽  
Vol 297-300 ◽  
pp. 628-634 ◽  
Author(s):  
Kenichi Ohi ◽  
Jae Hyouk Choi

This paper deals with shape memory alloy. As a first step to assess the applicability of this kind of alloy in a structural system, a tension bar made of this kind of alloy that exhibits pseudo-elasticity at room temperature is used herein as a passive bracing system. This paper describes sub-structure pseudo-dynamic tests on pseudo-elastic bracing system with hysteretic damper. A pseudo-elastic bracing system is better to be used with other hysteretic elements such as a hysteretic damper. A damper provides energy dissipation within small displacement levels, and a pseudo-elastic bracing system works in turn as a back-up/fail-safe system when an accidental failure of damper or damper interface occurs, and also it helps to pull back the structure to the original position by uninstalling the damper after earthquake.


2018 ◽  
Vol 203 ◽  
pp. 06005
Author(s):  
Azmi Mohammad Hassan ◽  
Raizal Saifulnaz Muhammad Rashid ◽  
Nazirah Ahmad ◽  
Shahria Alam ◽  
Farzad Hejazi ◽  
...  

Smart structures are defined as structures that able to adapt and maintain structural characteristics in dealing with changes of external disturbance, environment and unexpected severe loadings. This ability will lead to improve structural safety, serviceability and structural life extension. Shape memory alloys is one of the smart materials which has potential to be integrated in structural system to provide functions such as sensing, actuation, self-adapting and healing of the structures. The unique characteristic of shape memory alloys material is the ability to ‘remember’ its original shape after deformation. Nickel Titanium superelastic shape memory alloy wire is popular and widely used in many engineering fields and owned fully recovery of maximum strain of 6%-13.5% which is among the best shape recovery limit in alloy materials. The austenite finish temperature plays important role in stress-strain behaviour of superelastic shape memory alloys where higher stress required to complete martensite transformation with the increase of austenite finish temperature. The similar behaviour also is observed in the case of higher strain rate. The behaviour of superelastic shape memory alloys need to be studied before implementing in the structural system, so the targeted improvement for the structural system can be achieved.


2021 ◽  
Author(s):  
Andrea Salvatore ◽  
Biagio Carboni ◽  
Walter Lacarbonara

Abstract The negative stiffness exhibited by bi-stable mechanisms together with tunable hysteresis in the context of vibration isolation devices can enhance the dynamic resilience of a structure. The effects of negative stiffness and shape memory alloy (SMA) damping in base-isolated structures are here explored by carrying out an extensive study of the nonlinear dynamic response via pathfollowing, bifurcation analysis, and time integration. The frequency-response curves of the isolated structure, with and without the negative stiffness contribution, are numerically obtained for different excitation amplitudes to construct the acceleration and displacement transmissibility curves. The advantages of negative stiffness, damping augmentation and reduced accelerations and displacements transmissibility, as well as the existence of rich bifurcation scenarios giving rise to quasi-periodicity and synchronization, are extensively illustrated.


2013 ◽  
Vol 738-739 ◽  
pp. 150-154 ◽  
Author(s):  
Aleksandr E. Volkov ◽  
Margarita E. Evard ◽  
Andrey V. Vikulenkov ◽  
Evgeniy S. Uspenskiy

A vibroisolation of a payload connected to a vibrating housing by two helical shape memory alloy (SMA) elements is considered. A microstructural theory is used for the simulation of the mechanical behavior of the SMA. The simulations have shown that the resonant frequency and the mitigation of the external vibrations depend on the shape memory alloy state. The maximum reduction of the acceleration amplitude for harmonic excitation is reached when the SMA is in the martensitic pseudoplastic state or in the two-phase state. Variation of temperature allows changing the resonance frequency and thus escaping from resonance. The acceleration of the payload at impact is the smallest when the SMA elements are in the pseudoelastic state.


2005 ◽  
Vol 475-479 ◽  
pp. 2043-2046 ◽  
Author(s):  
Seung Hoon Nahm ◽  
Young Joo Kim ◽  
Jeong Min Kim ◽  
Dong Jin Yoon

When the shape memory alloy(SMA) completely consists of austenite phase that shows the super-elastic property, if the external energies, such as stress, crack, propagation and lamination, etc. are increased in this alloy until the austenite phase was transformed into the martensite phase, they are enough to change the mean free path of electrons correlated with the electrical resistivity of materials in the microscopic point of view. On the basis of the above concept, we carried out the feasible study for SMA wire as a strain sensor using the super-elastic property of SMA. The SMA wires of diameter 41 ㎛ were utilized for a sensor material. The relationship between electrical resistivity and tensile properties of the Ni-Ti based SMA wires during tensile loading was investigated. Since the strain is very sensitive to the minute change of electrical resistance of SMA wire, it is possible to use the SMA wire as a sensor of such physical quantities. In the study, the possibility for the application of Ni-Ti SMA wire as a sensor was investigated. The sensing system was able to measure the strain up to 6 % with 0.22 % measuring error. The sensitivity described by the ratio of electrical resistivity showed 0.00005.


Sign in / Sign up

Export Citation Format

Share Document