Radiolysis of liquid water: An attempt to reconcile Monte-Carlo calculations with new experimental hydrated electron yield data at early times

2002 ◽  
Vol 80 (10) ◽  
pp. 1367-1374 ◽  
Author(s):  
Yusa Muroya ◽  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin ◽  
Abdelali Filali-Mouhim ◽  
Thomas Goulet ◽  
...  

A re-examination of our Monte-Carlo modeling of the radiolysis of liquid water by low linear-energy-transfer (LET ~ 0.3 keV µm–1) radiation is undertaken herein in an attempt to reconcile the results of our simulation code with recently revised experimental hydrated electron (e–aq) yield data at early times. The thermalization distance of subexcitation electrons, the recombination cross section of the electrons with their water parent cations prior to thermalization, and the branching ratios of the different competing mechanisms in the dissociative decay of vibrationally excited states of water molecules were taken as adjustable parameters in our simulations. Using a global-fit procedure, we have been unable to find a set of values for those parameters to simultaneously reproduce (i) the revised e–aq yield of 4.0 ± 0.2 molecules per 100 eV at "time zero" (that is, a reduction of ~20% over the hitherto accepted value of 4.8 molecules per 100 eV), (ii) the newly measured e–aq decay kinetic profile from 100 ps to 10 ns, and (iii) the time-dependent yields of the other radiolytic species H•, •OH, H2, and H2O2 (up to ~1 µs). The lowest possible limiting "time-zero" yield of e–aq that we could in fact obtain, while ensuring an acceptable agreement between all computed and experimental yields, was ~4.4 to 4.5 molecules per 100 eV. Under these conditions, the mean values of the electron thermalization distance and of the geminate electron–cation recombination probability, averaged over the subexcitation electron "entry spectrum," are found to be equal to ~139 Å and ~18%, respectively. These values are to be compared with those obtained in our previous simulations of liquid water radiolysis, namely ~88 Å and ~5.5%, respectively. Our average electron thermalization distance is also to be compared with the typical size (~64–80 Å) of the initial hydrated electron distributions estimated in current deterministic models of "spur" chemistry. Finally, our average probability for geminate electron–cation recombination agrees well with an estimated value of ~15% recently reported in the literature. In conclusion, this work shows that an adaptation of our calculations to a lower hydrated electron yield at early times is possible, but also suggests that the topic is not closed. Further measurements of the e–aq yields at very short times are needed. Key words: liquid water, radiolysis, electron–cation geminate recombination, electron thermalization distance, hydrated electron (e–aq), e–aq decay kinetics, time-dependent molecular and radical yields, Monte-Carlo simulations.

2002 ◽  
Vol 80 (12) ◽  
pp. 1716
Author(s):  
Yusa Muroya ◽  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin ◽  
Abdelali Filali-Mouhim ◽  
Thomas Goulet ◽  
...  

ChemPhysChem ◽  
2008 ◽  
Vol 9 (14) ◽  
pp. 2099-2103 ◽  
Author(s):  
Ivano Tavernelli ◽  
Marie-Pierre Gaigeot ◽  
Rodolphe Vuilleumier ◽  
Carlos Stia ◽  
Marie-Anne Hervé du Penhoat ◽  
...  

2002 ◽  
Vol 80 (7) ◽  
pp. 767-773 ◽  
Author(s):  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin ◽  
Abdelali Filali-Mouhim ◽  
Samlee Mankhetkorn

Monte-Carlo simulations are performed to calculate the temperature dependence of the primary hydrated electron yield (Geaq-) for liquid water irradiated by low linear-energy-transfer radiation (LET ~ 0.3 keV µm–1) in the range 25–325°C. Calculations are carried out by taking properly into account the effect of the time and temperature dependencies of the water dielectric constant on the electron–cation geminate recombination. Our computed Geaq- values slightly increase with increasing temperature, in good agreement with experiment. The product Geaq- εmax(eaq-), estimated by using existing experimental data of the maximum molar extinction coefficient εmax(eaq-), remains nearly constant or slightly increases, depending on the temperature dependence chosen for εmax. Our Geaq-εmax(eaq-) values compare generally well with most experimental data, as well as with the predictions of deterministic diffusion-kinetic model calculations. Moreover, our results indicate that the static dielectric constant of water (εs) does not play any significant role on the electron–cation recombination at early times. Such a finding is inconsistent with the interpretation, proposed by certain authors in the literature, that Geaq- should in fact decrease as temperature is increased because of an increased electron–cation geminate recombination due to a lowering of εs. Finally, the temperature dependence of the hydrated electron yields, calculated at various times between 10 ps and 1 µs, shows that at low LET, the time required to establish homogeneous chemistry in the bulk of the solution is ~10–6 s in the range ~25–100°C, and that this time diminishes to ~10–7 s at higher temperatures. Key words: liquid water, radiolysis, temperature, hydrated electron (eaq-), radiolytic yields, electron–cation geminate recombination, dielectric constant, molar extinction coefficient of eaq-, homogenization time.


2001 ◽  
Vol 335 (5-6) ◽  
pp. 458-464 ◽  
Author(s):  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin ◽  
Abdelali Filali-Mouhim ◽  
Samlee Mankhetkorn

2002 ◽  
Vol 80 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin ◽  
Abdelali Filali-Mouhim ◽  
Samlee Mankhetkorn

Monte-Carlo simulations are used to calculate the primary yield of hydrogen peroxide (GH2O2) of the radiolysis of pure, deaerated liquid water as a function of linear energy transfer (LET) of the incident radiation over the range ~0.3–100 keV µm–1, at 25 and 300°C. The radiations include 1H+, 2H+, 4He2+, 7Li3+, and 12C6+ ions with energies from 0.17 MeV to 3.6 GeV. At 25°C, it is found that our GH2O2 values, calculated with protons of different initial energies, show a monotonic increase as a function of LET, in agreement with the commonly assumed expectation of an increase in molecular yields with increasing LET. Our calculated H2O2 yields at 300°C increase significantly faster with LET than do their corresponding 25°C values, showing that the temperature dependence of GH2O2 at higher LET is less than for low-LET radiation. We also report our results on the temporal variations of the H2O2 yields, in the interval ~1 × 10–13 – 1 × 10–6 s, at 25 and 300°C and for the different types of radiation considered. Finally, we find that for incident ions of equal LET > 10 keV µm–1, GH2O2 decreases as the ion velocity increases, from protons (or deuterons) to carbon ions. These differences produced in GH2O2 by changing the type of radiation are explained by the greater mean energy of secondary electrons from the higher velocity ions, which penetrate to a greater average distance from the actual particle track, with a corresponding decrease in molecular yields. Our calculated GH2O2 values compare generally well with the experimental data available from the literature and are also in good accord with the predictions of deterministic diffusion-kinetic model calculations reported earlier.Key words: liquid water, radiolysis, primary yields, hydrogen peroxide (H2O2), linear energy transfer (LET), accelerated protons and heavy ions, temperature, Monte-Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document