polymer aggregates
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

Aggregate ◽  
2021 ◽  
Author(s):  
Shoupeng Cao ◽  
Jingxin Shao ◽  
Loai K. E. A. Abdelmohsen ◽  
Jan C. M. Hest

Author(s):  
Rinat M. Akhmetkhanov ◽  
Valentina V. Chernova ◽  
Angela S. Shurshina ◽  
Mariya Yu. Lazdina ◽  
Elena I. Kulish

The aim of this work was the investigation of the formation of structures in solutions of individual polymers, as well as their blends with each other in buffer solvents with different values of pH. In this study we used a sample of chitosan (degree of deacetylation ~ 84 %, M = 130,000), which is a polycation when dissolved, and polyvinyl alcohol (r = 1.25 g/cm3, M = 5000). Buffer systems based on acetic acid and sodium acetate with pH = 3.8, 4.25, and 4.75 were used as solvents. Viscosimetry was used to determine the intrinsic viscosity, the degree of structuring, and the Huggins constant. The Kriegbaum method was used to determine the nature of the aggregates formed by the blend of the studied polymers. In the course of the research, it was shown that an increase in the pH of the acetate buffer used as a solvent was accompanied by a compression of the macromolecular coil (a decrease in intrinsic viscosity values), a deterioration in the quality of thesolvent (an increase in Huggins constant values), and an increase in the degree of polymer aggregation in a solution for chitosan polyelectrolyte. At the same time for a solution of polyvinyl alcohol the pH of the buffer practically did not affect the nature of the polymer-solvent interaction. It has been proved that polymer blends are characterized by an increase in aggregation processes and a decrease in the thermodynamic quality of the solvent in comparison with solutions of individual polymers. The size of the “combined” macromolecular coil, characterized by the intrinsic viscosity value for the polymer blend, which can be both above (buffer solvent with pH = 3.80) and below (buffer solvent with pH = 4.25 and 4.75) additivevalues, changed depending on the type of formed polymer-polymer aggregates (homo- or hetero-). It was established that the type of aggregates (homo- or hetero-) formed in solutions of polymer blends was determined not only by the thermodynamic quality of the used solvents, but also by the concentration of the polymers in the initial solutions


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gordon J. Hedley ◽  
Tim Schröder ◽  
Florian Steiner ◽  
Theresa Eder ◽  
Felix J. Hofmann ◽  
...  

AbstractThe particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.


2021 ◽  
Author(s):  
Miao Xiong ◽  
Xinwen Yan ◽  
Jia-Tong Li ◽  
Song Zhang ◽  
Zhiqiang Cao ◽  
...  

2020 ◽  
Author(s):  
Garima Rani ◽  
Kenichi Kuroda ◽  
Satyavani Vemparala

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2321 ◽  
Author(s):  
N.K. Balakrishnan ◽  
K. Koenig ◽  
G. Seide

Sub-microfibers and nanofibers produce more breathable fabrics than coarse fibers and are therefore widely used in the textiles industry. They are prepared by electrospinning using a polymer solution or melt. Solution electrospinning produces finer fibers but requires toxic solvents. Melt electrospinning is more environmentally friendly, but is also technically challenging due to the low electrical conductivity and high viscosity of the polymer melt. Here we describe the use of colorants as additives to improve the electrical conductivity of polylactic acid (PLA). The addition of colorants increased the viscosity of the melt by >100%, but reduced the electrical resistance by >80% compared to pure PLA (5 GΩ). The lowest electrical resistance of 50 MΩ was achieved using a composite containing 3% (w/w) indigo. However, the thinnest fibers (52.5 µm, 53% thinner than pure PLA fibers) were obtained by adding 1% (w/w) alizarin. Scanning electron microscopy revealed that fibers containing indigo featured polymer aggregates that inhibited electrical conductivity, and thus increased the fiber diameter. With further improvements to avoid aggregation, the proposed melt electrospinning process could complement or even replace industrial solution electrospinning and dyeing.


Sign in / Sign up

Export Citation Format

Share Document