Hydrolysis of dimethylphenyltin(IV) and triphenyltin(IV) chlorides in different aqueous ethanol solutions

2008 ◽  
Vol 86 (8) ◽  
pp. 751-756 ◽  
Author(s):  
Morteza Jabbari ◽  
Farrokh Gharib ◽  
Mostafa Mohammadpour Amini ◽  
Amirreza Azadmehr

The hydrolysis of [(Me)2(Ph)Sn(IV)]+ and [(Ph)3Sn(IV)]+ has been investigated at 25 °C and different aqueous solutions of ethanol, using a combination of spectrophotometric and potentiometric techniques. The species formed together with their formation constants have been determined using the computer program Squad over a wide pH range of 1 to 11. The hydrolysis constants in different media were analyzed in terms of Kamlet and Taft parameters. Single-parameter correlation of the formation constants, K11 and K12, versus α (hydrogen-bond donor acidity), β (hydrogen-bond acceptor basicity), and π* (dipolarity/polarizability) for both cases are relatively poor in all solutions, but multiparameter correlation represents significant improvement with regard to the single-parameter models. In this work, we have also used the normalized polarity parameter, ETN, alone and in combination with the Kamlet–Taft parameter to find a better correlation of the formation constants in different aqueous ethanol solutions.Key words: dimethylphenyltin(IV) chloride, triphenyltin(IV) chloride, hydrolysis constant, aqueous ethanol solutions, solvent effect.

2010 ◽  
Vol 88 (9) ◽  
pp. 877-885 ◽  
Author(s):  
Morteza Jabbari ◽  
Farrokh Gharib

The protonation equilibria of glycine (gly), glycyl-glycine (gly-gly), and glycyl-glycyl-glycine (gly-gly-gly) and their formation constants with triphenyltin(IV) chloride were studied over a wide pH range (pH 1–11), using a combination of spectrophotometric and potentiometric methods at constant temperature (25 °C), different ethanol–water mixtures (50%–80%, v/v), and constant ionic strength (0.1 mol dm–3 NaClO4). Least-squares regression calculations are consistent with the formation of ph3SnHL+, ph3SnL, and ph3SnH–1L– complex species, where L– represents the fully dissociated form of each ligand. The stability constant of the formed complexes in different media were analyzed in terms of Kamlet, Abboud, and Taft (KAT) parameters. Single-parameter correlations of the stability constants versus α (hydrogen-bond donor acidity), β (hydrogen-bond acceptor basicity), and for π* (dipolarity/polarizability) are relatively poor in all solutions, but multi-parameter correlations represent significant improvements with regard to the single- and dual-parameter models. Linear correlation is observed when the experimental logβxyz values are plotted versus the calculated ones, while all the KAT parameters are considered. Also, the stability constant values of the formed complexes are determined in zero percent of organic solvent using the Yasuda–Shedlovsky extrapolation approach. Finally, the results are discussed in terms of the effect of solvent on complexation.


2018 ◽  
Vol 20 (38) ◽  
pp. 24591-24601 ◽  
Author(s):  
Shashi Kant Shukla ◽  
Jyri-Pekka Mikkola

An increase in hydrogen bond acceptor basicity (β) and a decrease in hydrogen bond donor acidity (α) simultaneously promotes higher CO2 uptake in deep eutectic solvents.


2019 ◽  
Vol 63 (2) ◽  
Author(s):  
Fatemeh Zabihi ◽  
Farhoush Kiani ◽  
Mojtaba Yaghobi ◽  
Seyed Ahmad Shahidi ◽  
Fardad Koohyar

Abstract. The protonation constants of the betanin (pKa1, pKa2, and pKa3) were determined in mixed solvent of water and methanol containing 0, 10, 20, 30, 40, 50, 60, 70, and 80 % (v/v) methanol, using a combination of the spectrophotometric and potentiometric methods at T = 25 ºC and constant ionic strength (0.1 mol.dm-3 NaClO4). The obtained protonation constants were analyzed using Kamlet, Abboud, and Taft parameters. KAT parameters are α (hydrogen-bond donor acidity), β (hydrogen-bond acceptor basicity), and π* (dipolarity/polarizability). In this study, a good linear relationship was obtained between protonation constants (on the logarithmic scale) and dielectric constant (ɛ) of the water-methanol mixed solvents. It was found that the dual-parameter correlation between log10K,s and π*, β  give us the best result in various volume fractions of methanol for water-methanol mixed solvent. Finally, the results are discussed in terms of the effect of the solvent on the protonation constants.   Resumen. Las constantes de protonación de la betanina (pKa1, pKa2 y pKa3) se determinaron en un disolvente mixto de agua y metanol que contenía metanol al 0, 10, 20, 30, 40, 50, 60, 70 y 80% (v / v), utilizando una combinación de los métodos espectrofotométricos y potenciométricos a T = 25 ºC y fuerza iónica constante (0,1 mol.dm-3 NaClO4). Las constantes de protonación obtenidas se analizaron utilizando los parámetros de Kamlet, Abboud y Taft. Los parámetros KAT son α (acidez del donante de enlaces de hidrógeno), β (basicidad del aceptor de enlaces de hidrógeno) y π* (dipolaridad / polarizabilidad). En este estudio, se obtuvo una buena relación lineal entre las constantes de protonación (en la escala logarítmica) y la constante dieléctrica (ɛ) de los disolventes mixtos agua-metanol. Se encontró que la correlación de doble parámetro entre log10K, s y π*, β nos da el mejor resultado en varias fracciones de volumen de metanol para el disolvente mixto agua-metanol. Finalmente, los resultados se discuten en términos del efecto del solvente en las constantes de protonación.


2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph A. Bauer ◽  
Gisbert Schneider ◽  
Andreas H. Göller

Abstract We present machine learning (ML) models for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) strengths. Quantum chemical (QC) free energies in solution for 1:1 hydrogen-bonded complex formation to the reference molecules 4-fluorophenol and acetone serve as our target values. Our acceptor and donor databases are the largest on record with 4426 and 1036 data points, respectively. After scanning over radial atomic descriptors and ML methods, our final trained HBA and HBD ML models achieve RMSEs of 3.8 kJ mol−1 (acceptors), and 2.3 kJ mol−1 (donors) on experimental test sets, respectively. This performance is comparable with previous models that are trained on experimental hydrogen bonding free energies, indicating that molecular QC data can serve as substitute for experiment. The potential ramifications thereof could lead to a full replacement of wetlab chemistry for HBA/HBD strength determination by QC. As a possible chemical application of our ML models, we highlight our predicted HBA and HBD strengths as possible descriptors in two case studies on trends in intramolecular hydrogen bonding.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1940 ◽  
Author(s):  
Yanwen Zhong ◽  
Xuanyi Li ◽  
Hequan Yao ◽  
Kejiang Lin

The programmed cell death ligand protein 1 (PD-L1) is a member of the B7 protein family and consists of 290 amino acid residues. The blockade of the PD-1/PD-L1 immune checkpoint pathway is effective in tumor treatment. Results: Two pharmacophore models were generated based on peptides and small molecules. Hypo 1A consists of one hydrogen bond donor, one hydrogen bond acceptor, two hydrophobic points and one aromatic ring point. Hypo 1B consists of one hydrogen bond donor, three hydrophobic points and one positive ionizable point. Conclusions: The pharmacophore model consisting of a hydrogen bond donor, hydrophobic points and a positive ionizable point may be helpful for designing small-molecule inhibitors targeting PD-L1.


2013 ◽  
Vol 91 (12) ◽  
pp. 1292-1302 ◽  
Author(s):  
Osama Y. Ali ◽  
Elyse Jewer ◽  
Travis D. Fridgen

The infrared absorption spectra of hydrogen-bonded complexes of propylene oxide with either ethanol or 2-fluoroethanol have been recorded in neon matrices. Mixtures of propylene oxide and ethanol or propylene oxide and 2-fluoroethanol vapors were mixed with an excess of neon gas and deposited onto a KBr substrate at 4.2 K. The results indicate that hydrogen-bonded complexes were formed with propylene oxide as the hydrogen bond acceptor and either ethanol or 2-fluoroethanol as the hydrogen bond donors. The features assigned to the O−H stretch were red-shifted by 175 and 193 cm−1 for the ethanol- and 2-fluoroethanol-containing complexes, respectively. The difference in red shifts can be accounted for due to the greater acidity of 2-fluroethanol. Deuterium isotope experiments were conducted to help confirm the assignment of the O–H stretch for the complexes. As well, structures and infrared spectra were calculated using B3LYP/6-311++G(2d,2p) calculations and were used to compare with the experimental spectra. A “scaling equation” rather than a scaling factor was used and is shown to greatly increase the utility of the calculations when comparing with experimental spectra. An examination of the O–H stretching red shifts for many hydrogen-bound complexes reveals a relationship between the shift and the difference between the acidity of the hydrogen bond donor and the basicity of the hydrogen bond acceptor (the enthalpy of proton transfer). Both hydrogen-bonded complexes and proton-bound complexes appear to have a maximum in the reduced frequency value that corresponds to complexes where the hydrogen/proton are equally shared between the two bases.


1985 ◽  
Vol 63 (9) ◽  
pp. 2540-2544 ◽  
Author(s):  
W. Kirk Stephenson ◽  
Richard Fuchs

Heats of solution of triethylamine, aniline, pyridine, and model compounds (3-ethylpentane, benzene) in 17 organic solvents (n-heptane, cyclohexane, carbon tetrachloride, 1,2-dichloroethane, α,α,α-trifluorotoluene, triethylamine, butyl ether, ethyl acetate, dimethylformamide, dimethyl sulfoxide, benzene, toluene, mesitylene, t-butyl alcohol, 1-octanol, methanol, 2,2,2-trifluoroethanol) have been combined with solute heats of vaporization to give enthalpies of transfer from vapor to solvent (ΔH(v → s)). Differences between solute and model values (ΔΔH(v → s) = ΔH(v → s) (solute) – ΔH(v → s) (model)) were used to evaluate nitrogen base solute–solvent polar interactions. Correlations of ΔΔH(v → s) with Taft–Kamlet solvatochromic parameters (π*, α, β) have been determined.Aniline was found to be a better hydrogen bond donor acid than hydrogen bond acceptor base. Nevertheless, alcohols donate H-bonds to aniline. Triethylamine and pyridine are stronger HBA bases than aniline. The π* (dipolarity–polarizability) parameter of aniline (as a solute) is calculated to be 1.10.


Sign in / Sign up

Export Citation Format

Share Document