An analytical solution of the Gibbs–Dehem equation in multicomponent systems

1970 ◽  
Vol 48 (5) ◽  
pp. 752-763 ◽  
Author(s):  
A. D. Pelton

A general analytical power-series solution of the Gibbs–Duhem equation in multicomponent systems of any number of components has been developed. The simplicity and usefulness of the solution is made possible through the choice of a special set of composition variables.

2021 ◽  
Vol 25 (8) ◽  
pp. 6075-6082
Author(s):  
Hemanta Mandal ◽  
B. Bira ◽  
D. Zeidan

2020 ◽  
Vol 25 (1) ◽  
pp. 92-105
Author(s):  
Pradeep Mohan ◽  
R. Ramesh Kumar

AbstractThe intricacy in Lekhnitskii’s available single power series solution for stress distribution around hole edge for both circular and noncircular holes represented by a hole shape parameter ε is decoupled by introducing a new technique. Unknown coefficients in the power series in ε are solved by an iterative technique. Full field stress distribution is obtained by following an available method on Fourier solution. The present analytical solution for reinforced square hole in an orthotropic infinite plate is derived by completely eliminating stress singularity that depends on the concept of stress ratio. The region of validity of the present analytical solution on reinforcement area is arrived at based on a comparison with the finite element analysis. The present study will also be useful for deriving analytical solution for orthotropic shell with reinforced noncircular holes.


2019 ◽  
Vol 31 (02) ◽  
pp. 2050024
Author(s):  
Zhi-Yong Zhang ◽  
Kai-Hua Ma ◽  
Li-Sheng Zhang

We first perform a complete Lie symmetry classification of the generalized convective Cahn–Hilliard equation. Then using the obtained symmetries, we mainly study the convective Cahn–Hilliard equation, of which a new power series solution is constructed. In particular for the crystal surface growth processes, the truncated series solution shows that the surface structures include peaks and valleys, and can exhibit different evolution trends with the driving force varying from compressive force to tensile force. Moreover, there exist several critical points for the driving force, where the surface configurations take the jump changes and show different features on the both sides of such critical points. According to the effects of driving forces, we analyze the dynamical features of crystal growth.


Author(s):  
Hiroto Inoue

A matrix-valued extension of the Bratu equation is defined. For its initial value problem, the exponential matrix solution and power series solution are provided.


Sign in / Sign up

Export Citation Format

Share Document