Reaction of 4,4′-Bis(dimethylamino) triphenylmethyl Tetrafluoroborate with Alkoxide Ions. I. Determination of Ion-pair Dissociation Constant for Sodium Alkoxides

1975 ◽  
Vol 53 (11) ◽  
pp. 1537-1541 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Andrej Suszka

The second-order rate constants have been determined for the reaction of 4,4′-bis(dimethylamino)triphenylmethyl tetrafluoroborate carbonium ion with sodium methoxide in methanol and sodium ethoxide in ethanol. The results have been used to evaluate the ion-pair dissociation constants for the two alkoxides. The activation parameters for the two reactions with the free alkoxide ions are also reported.


1976 ◽  
Vol 159 (2) ◽  
pp. 323-333 ◽  
Author(s):  
C G Knight ◽  
N M Green

A series of N-(N-dinitrophenylaminoalkyl)maleimides were sythesized with alkyl-chain lengths of two, four and six carbon atoms. When these compounds reacted with the thiol group of mercaptalbumin, the tryptophan fluorescence of the protein was quenched. This change in fluorescence was used to determine the rate of reaction of the Dnp (dinitrophenyl)-maleimides with mercaptalbumin. The second-order rate constants were similar to those observed in reactions between low-molecular-weight thiol compounds and maleimides. When N-(N-Dnp-aminoalkyl)succinimidomercaptalbumins were added to univalent fragments of anti-Dnp antibody the antibody fluorescence was quenched. Florescence-quenching titrations showed that the protein-bound Dnp groups were fully available to the antibody even when the alkyl chain was short. The apparent dissociation constants were significantly > that of the interaction between anti-Dnp antibody and the free hapten, 6-(N-Dnp)-aminohexanoate. The antibody fluorescence was quenched efficienty by [dnp-Lys41]ribonuclease A, also with an increased dissociation constant. It could be concluded from the increase in dissociation constant that the Dnp group spent no more than 0.1% of its time in the dissociated state, available to antibody. The second-order rate constants for the association between the Dnp-mercaptablumins and the antibody were determined and were similar in magnitude to those observed in other interactions between protein and anti-protein antibody.



1977 ◽  
Vol 55 (10) ◽  
pp. 1696-1700 ◽  
Author(s):  
Jan Kurzawa ◽  
Kenneth T. Leffek

The second-order rate constants have been determined for the β-elimination reactions of 2,2-di-(p-nitrophenyl)-1,1,1-trifluoroethane, 2,2-di-(p-nitrophenyl)-1-fluoroethane, and their β-deuterated analogues with sodium methoxide in methanol. The primary isotope effects and activation parameters for these reactions are reported. It is suggested that the trifluoro-compound reacts via the pre-equilibrium carbanion mechanism (ElcB)R and that the monofluoro compound follows the E2 mechanism via a carbanion-like transition state.



1975 ◽  
Vol 53 (22) ◽  
pp. 3408-3413 ◽  
Author(s):  
Chang B. Kim ◽  
Kenneth T. Leffek

Second-order rate constants at 25 °C have been measured for the reaction of triphenylmethyl carbonium ion with pyridine and substituted pyridines in nitromethane and 1,2-dichloroethane solvent. The activation parameters are in the range 1 to 3 kcal mol−1 for the enthalpies of activation and −20 to −45 cal mol−1 deg−1 for the entropies of activation. The results are compared to the analogous measurements for Menschutkin reactions and it is concluded that the enthalpy of activation of a Menschutkin reaction results mainly from the bond breaking process and solvation changes associated with it, since the carbon-nitrogen bond making process seems to be entropy controlled.Rate measurements have also been made for 2-methylpyridine reacting with a series of para-substituted triphenylmethyl carbonium ion substrates in 1,2-dichloroethane solvent. A plot of log k2vs ∑σ+ is non-linear and the curvature is interpreted as a saturation effect.



1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.



1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.



Author(s):  
Aigul A. Maksyutova ◽  
Elvina R. Khaynasova ◽  
Yuriy S. Zimin

The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.



1986 ◽  
Vol 64 (6) ◽  
pp. 1021-1025 ◽  
Author(s):  
Arnold Jarczewski ◽  
Grzegorz Schroeder ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

Rate constants for the proton and deuteron transfer from 1-(4-nitrophenyl)-1-nitroethane to cesium n-propoxide in n-propanol have been measured under pseudo-first-order conditions with an excess of base for four temperatures between 5 and 35 °C. Using literature values of the fraction of cesium n-propoxide ion pairs that are dissociated into free ions, separate second-order rate constants for the proton and deuteron transfer to the ion pair and to the free ion have been calculated. The cesium n-propoxide ion pair is about 2.8 times more reactive than the free n-propoxide ion. The primary kinetic isotope effects for the two reactions are the same (kH/kD = 6.1–6.3 at 25 °C) within experimental error. The enthalpy of activation is smaller for the ion-pair reaction and the entropy of activation more negative than for the free-ion reaction. For proton transfer, ΔH±ion pair = 8.3 ± 0.2 kcal mol−1, ΔH±ion = 9.6 ± 1.0 kcal mol−1, ΔS±ion pair = −12.3 ± 0.6 cal mol−1 deg−1, ΔS±ion = −10.1 ± 3.4 cal mol−1 deg−1. The greater reactivity of the ion pair relative to the free ion is interpreted in terms of the weaker solvation shell of the ion pair in the initial state.



2019 ◽  
Vol 57 (8) ◽  
pp. 745-750
Author(s):  
İlkay Konçe ◽  
Ebru Çubuk Demiralay ◽  
Hülya Yılmaz Ortak

Abstract The presented study describes the development of reversed-phase liquid chromatography method using a core-shell particle column with a pentafluorophenyl stationary phase for the dissociation constant (pKa) determination of the tetracycline group antibiotics (tetracycline, oxytetracycline, chlortetracycline) and their epimers (4-epitetracycline, 4-epioxytetracycline, 4-epichlortetracycline). The pH values were measured in the acetonitrile (ACN)–water binary mixtures, used as mobile phases, instead of in water and take into account the effect of the activity coefficients. Thermodynamic acid dissociation constant (pKa1) values of studied antibiotics and their epimers were calculated using retention factor (k) at different mobile phase pH values in studied binary mixtures with ACN percentages of 20, 25, 30 and 35% (v/v). Experimental data were analyzed by using an Origin 7.0 program to fit experimental data to the nonlinear expression derived. From calculated pKa1 values, the aqueous pKa values of studied compounds were calculated by different approaches and these values were compared.



1973 ◽  
Vol 26 (6) ◽  
pp. 1235 ◽  
Author(s):  
SC Chan ◽  
SF Chan

The second-order rate constants for the thallium(III)-induced aquation of cis-[Co(en)2(RNH2)Cl]2+ cations, where R is H, Me, Et, Prn, and Pri, have been measured in aqueous solution over a range of temperatures, and the activation parameters calculated. The kinetic results are discussed in terms of a rapid pre-equilibrium formation of an activated complex Co-Cl-Tl, followed by a simple rate-determining aquation in which TlCl2+ acts as the leaving group, although the alternative possibility of a rate-determining attack by Tl3+ cannot be excluded. In the case of R = H, the investigations have been extended to the corresponding bromo cation which reacts some 50 times faster than its chloro analogue.



Sign in / Sign up

Export Citation Format

Share Document