The thermally induced rearrangements of 2-vinyloxirane

1976 ◽  
Vol 54 (21) ◽  
pp. 3364-3376 ◽  
Author(s):  
Robert J. Crawford ◽  
Stuart B. Lutener ◽  
Robert D. Cockcroft

The kinetics of the gas phase thermolysis of 2-vinyloxirane (4) have been studied over the temperature range 270–310 °C. The racemization of chiral 4 occurs six times faster than the structural isomerization to 2,3-dihydrofuran, (E)- and (Z)-2-butenal, and 3-butenal. The butenals undergo a slow thermolysis to propene and carbon monoxide. cis-Deuterio- and trans-3-deuterio-vinyloxirane have been synthesized and their interconversion is slow. Deuterium kinetic isotope effects on mono- and dideuterio-4 suggest that for the formation of the butenals the rate determining step involves rupture of the oxirane C—O bond. The dihydrofuran is produced by thermolysis of the oxirane C—C bond. The preferred mechanistic interpretation is that a carbon–oxygen diradical serves as an intermediate for butenal formation, and that a carbonyl-ylide is involved in the formation of the dihydrofuran.The relative rates, at 307.4 °C, of cis–trans-5-isomerization:dihydrofuran formation:racemization: butenal formation for 3-deuterio-2-vinyloxirane are 1.0:0.88:40.2:5.94, respectively.

1985 ◽  
Vol 63 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
John W. Bunting ◽  
John C. Brewer

The rates of reduction of a series of 1-(Z-benzyl)nicotinonitrile cations by a series of 1-(X-benzyl)-1,4-dihydronicotinamides have been studied at 25 °C in 20% CH3CN – 80% H2O (pH 7.0 (5 mM phosphate), ionic strength 1.0 (KCl)). Spectral studies indicate the formation of 1,4-dihydronicotinonitrile products, without the formation of the isomeric 1,2-dihydro- or 1,6-dihydro-nicotinamide intermediates. Second-order rate constants (k2) for these reductions are closely correlated with the Hammett σ constants for X and Z. Thus, for X = H, log k2 = 0.63σz − 1.05, while for Z = 4-CN, log k2 = −0.64σx − 0.65. The close correspondence between these ρx and ρz values indicates that charge neutralization on the nicotinonitrile cation exactly balances charge generation on the nicotinamide cation product in the rate-determining transition state. Thus the migrating hydrogen species is electrically neutral in the rate-determining transition state, which contrasts with the hydridic transition states previously reported in the reduction of isoquinolinium cations by 1,4-dihydronicotinamides. When 1-benzyl-4,4-dideuterio-1,4-dihydronicotinamide is used as the reductant, primary kinetic isotope effects of 3.0 and 2.7 are observed for the reduction of the 1-methylnicotinonitrile and 1-(4-cyanobenzyl)-nicotinonitrile cations, respectively. These data are evaluated in terms of the various mechanistic possibilities for hydride transfer.


1980 ◽  
Vol 58 (2) ◽  
pp. 124-129 ◽  
Author(s):  
Y. Chiang ◽  
W. K. Chwang ◽  
A. J. Kresge ◽  
S. Szilagyi

Rates of hydrolysis of 1-ethoxy-3,3,5,5-tetramethylcyclopentene and 1-methoxy-2,3,3,5,5-pentamethylcyclopentene measured in mineral acid and formic and acetic acid buffer solutions show general acid catalysis and give large kinetic isotope effects in the normal direction (kH/kD > 1). This indicates that these reactions proceed by the conventional mechanism for vinyl ether hydrolysis in which proton transfer from the catalyzing acid to the substrate is rate-determining, and that the I-strain in these substrates is insufficiently great to shift the reaction mechanism to rapidly reversible substrate protonation followed by rate-determining hydration of the ensuing cationic intermediate.


1994 ◽  
Vol 116 (8) ◽  
pp. 3609-3610 ◽  
Author(s):  
Richard A. J. O'Hair ◽  
Gustavo E. Davico ◽  
Jale Hacaloglu ◽  
Thuy Thanh Dang ◽  
Charles H. DePuy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document