Simultaneous diffusion and chemical activation control of the kinetics of the binding of carbon monoxide to ferroprotoporphyrin IX in glycerol–water mixtures of high viscosity

1977 ◽  
Vol 55 (23) ◽  
pp. 3955-3960 ◽  
Author(s):  
Brian B. Hasinoff

The kinetics of the reaction of ferroprotoporphyrin IX with CO have been studied in mixed glycerol–water solvents of high viscosity in order that the simultaneous influence of chemical activation and diffusion control of the reaction might be observed. Analyses of curved Arrhenius plots indicated that in the low temperature high viscosity limits the reaction is largely diffusion controlled. The deviation of the second order diffusion rate constants, from that predicted by simple theory for reaction between uniformly reactive spheres of equal radii, is a factor of 0.3 to 0.9, depending upon the solvent composition. A couple of other models for diffusion controlled reaction, ascribing these deviations to changes of steric requirements, were also examined.

2021 ◽  
Vol 29 ◽  
pp. 95-115
Author(s):  
Rafal Kozubski ◽  
Graeme E. Murch ◽  
Irina V. Belova

We review the results of our Monte Carlo simulation studies carried out within the past two decades in the area of atomic-migration-controlled phenomena in intermetallic compounds. The review aims at showing the high potential of Monte Carlo methods in modelling both the equilibrium states of the systems and the kinetics of the running processes. We focus on three particular problems: (i) the atomistic origin of the complexity of the ‘order-order’ relaxations in γ’-Ni3Al; (ii) surface-induced ordering phenomena in γ-FePt and (iii) ‘order—order’ kinetics and self-diffusion in the ‘triple-defect’ β-NiAl. The latter investigation demonstrated how diverse Monte Carlo techniques may be used to model the phenomena where equilibrium thermodynamics interplays and competes with kinetic effects.


1997 ◽  
Vol 481 ◽  
Author(s):  
E. Pineda ◽  
T. Pradell ◽  
D. Crespo ◽  
N. Clavaguera ◽  
J. ZHU ◽  
...  

ABSTRACTThe microstructure developed in primary crystallizations is studied under realistic conditions. The primary crystallization of an amorphous alloy is modeled by considering the thermodynamics of a metastable phase transition and the kinetics of nucleation and crystal growth under isothermal annealing. A realistic growth rate, including an interface controlled growth at the beginning of the growth of each single grain and diffusion controlled growth process with soft impingement afterwards is considered. The reduction in the nucleation rate due to the compositional change in the remaining amorphous matrix is also taken into account. The microstructures developed during the transformation are obtained by using the Populational KJMA method, from the above thermodynamic and kinetic factors. Experimental data of transformed fraction, grain density, average grain size, grain size distribution and other related parameters obtained from annealed metallic glasses are modeled.


1979 ◽  
Vol 32 (12) ◽  
pp. 2597 ◽  
Author(s):  
AO Filmer ◽  
AJ Parker ◽  
BW Clare ◽  
LGB Wadley

The kinetics of oxidation with oxygen of chalcocite, Cu2S, to CuS in buffered aqueous ammonia at pH 10.5 at 30� can be modeled approximately by a shrinking core of Cu2S within a thickening shell of CuxS (x ≥ 1). The Cu2S core offers partial cathodic protection to the CuxS and diffusion of Cu+ through CuxS controls the rate of reaction. The kinetics of oxidation of covellite, CuS, to Cu2+, sulfur and sulfate ions in the same solvent can be modeled by a shrinking core of CuS surrounded by a shrinking sphere of CuyS (y < 1) which is much less effectively protected cathodically by the CuS core. Oxidation of CuS is subject to mixed chemical and diffusion control. Rates of oxidation of NiS and of CuS, in the presence and absence of tetrachloroethene and ammonium sulfate, show that, whether sulfur is a major oxidation product or not, the presence of sulfur has very little, if any, influence on the rate or mechanism of oxidation. This is contrary to current ideas on metal sulfide oxidation.


Sign in / Sign up

Export Citation Format

Share Document