Heterogeneous metal-insertion: a novel reaction with porphyrins

1978 ◽  
Vol 56 (8) ◽  
pp. 1084-1087 ◽  
Author(s):  
Otto Herrmann ◽  
S. Husain Mehdi ◽  
Alfio Corsini

Metal complexes of water-soluble and other porphyrins have been prepared by a heterogeneous reaction with the metal reactant present in an insoluble form. The oxidation state of the metal is important in the reactions. Metal reactants in the lower oxidation states (0, I, II) react with porphyrins but those in the higher oxidation states (III, IV) do not. Metalloporphyrins of high purity may be conveniently prepared by this method.

2005 ◽  
Vol 09 (06) ◽  
pp. 436-443 ◽  
Author(s):  
Oscar Ramirez-Gutierrez ◽  
Josep Claret ◽  
Josep M. Ribo

The Mn oxidation state of two water soluble Mn porphyrins, MnTMPyP and MnTPPS 4, was studied as a function of the aqua or hydroxo ligands of the Mn atom. In NaOH solutions, long-lived O = Mn(IV) species were detected in the presence of O 2. Conversely, the dihydroxo Mn(III) porphyrin reduces spontaneously to the Mn(II) species in the absence of O 2. In alkaline solutions, these Mn porphyrins were able to electrocatalyze the 4-electron reduction of O 2 to H 2 O on a vitreous carbon electrode.


2020 ◽  
Author(s):  
F.J. de Zwart ◽  
Bente Reus ◽  
Annechien A.H. Laporte ◽  
Vivek Sinha ◽  
Bas de Bruin

The conventional method of assigning formal oxidation states (FOS) to metals and ligands is an important tool for understanding and predicting chemical reactivity, in particular in catalysis research. For complexes containing redox-noninnocent ligands, the oxidation state of the ligand can be ambiguous (i.e. their spectroscopic oxidation state can differ from the formal oxidation state), and thus frustrates the assignment of the oxidation state of the metal. A quantitative correlation between empirical metric data of redox active ligands and their oxidation states using a metrical oxidation state (MOS) model has been developed for catecholate and aminophenolate derived ligands by Brown. In the present work, we present a MOS model for 1,4-diazabutadiene (DAD<sup>n</sup>) ligands. The model is based on a similar approach as reported by Brown, correlating the intra-ligand bond lengths of the DAD<sup>n</sup> moiety in a quantitative manner to the MOS using geometrical information from X-ray structures in the Cambridge Crystallographic Data Center (CCDC) database. However, accurate determination of the MOS of these ligands turned-out to be dependent the coordination mode of the DAD<sup>2-</sup> moiety, which can adopt both a planar <i>κ<sup>2</sup></i>-<i>N<sub>2</sub></i>-geometry and a <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> π-coordination mode in (transition) metal complexes in its doubly reduced, dianionic enediamide oxidation state. A reliable MOS model was developed taking the intrinsic differences in intra-ligand bond distances between these coordination modes of the DAD<sup>2‒</sup> ligand into account. Three different models were defined and tested using different geometric parameters (C=C→M distance, M-N-C angle, M-N-C-C torsion angle) to describe the C=C backbone coordination to the metal in the <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> π-coordination mode of the DAD<sup>2‒</sup> ligand. Statistical analysis revealed that the C=C→M distance best describes the <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> coordination mode, using a cut-off value of 2.46 Å for π-coordination. The developed MOS model was used to validate the oxidation state assignment of elements not contained within the training set (Sr, Yb and Ho), thus demonstrating the applicability of the MOS model to a wide range of complexes. Chromium complexes with complex electronic structures were also shown to be accurately described by MOS analysis. Furthermore, it is shown that a combination of MOS analysis and FOD calculations provide an inexpensive method to gain insight into the electronic structure of singlet spin state (S = 0) [M(trop<sub>2</sub>dad)] transition metal complexes showing multireference character.<br>


2016 ◽  
Vol 45 (1) ◽  
pp. 246-252 ◽  
Author(s):  
Yanxia Zhao ◽  
Yanyan Liu ◽  
Qian-Shu Li ◽  
Ji-Hu Su

A series of gallium complexes with different oxidation states of ligand and metal were obtained, both monoanionic and dianionic ligands can be further reduced, where reduction of the radical monoanionic α-diimine ligand into dianion or of Ga (+3) into the lower oxidation state Ga (+2) or Ga (+1.5) takes place.


2020 ◽  
Author(s):  
F.J. de Zwart ◽  
Bente Reus ◽  
Annechien A.H. Laporte ◽  
Vivek Sinha ◽  
Bas de Bruin

The conventional method of assigning formal oxidation states (FOS) to metals and ligands is an important tool for understanding and predicting chemical reactivity, in particular in catalysis research. For complexes containing redox-noninnocent ligands, the oxidation state of the ligand can be ambiguous (i.e. their spectroscopic oxidation state can differ from the formal oxidation state), and thus frustrates the assignment of the oxidation state of the metal. A quantitative correlation between empirical metric data of redox active ligands and their oxidation states using a metrical oxidation state (MOS) model has been developed for catecholate and aminophenolate derived ligands by Brown. In the present work, we present a MOS model for 1,4-diazabutadiene (DAD<sup>n</sup>) ligands. The model is based on a similar approach as reported by Brown, correlating the intra-ligand bond lengths of the DAD<sup>n</sup> moiety in a quantitative manner to the MOS using geometrical information from X-ray structures in the Cambridge Crystallographic Data Center (CCDC) database. However, accurate determination of the MOS of these ligands turned-out to be dependent the coordination mode of the DAD<sup>2-</sup> moiety, which can adopt both a planar <i>κ<sup>2</sup></i>-<i>N<sub>2</sub></i>-geometry and a <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> π-coordination mode in (transition) metal complexes in its doubly reduced, dianionic enediamide oxidation state. A reliable MOS model was developed taking the intrinsic differences in intra-ligand bond distances between these coordination modes of the DAD<sup>2‒</sup> ligand into account. Three different models were defined and tested using different geometric parameters (C=C→M distance, M-N-C angle, M-N-C-C torsion angle) to describe the C=C backbone coordination to the metal in the <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> π-coordination mode of the DAD<sup>2‒</sup> ligand. Statistical analysis revealed that the C=C→M distance best describes the <i>η<sup>4</sup></i>-<i>N<sub>2</sub></i>-<i>C<sub>2</sub></i> coordination mode, using a cut-off value of 2.46 Å for π-coordination. The developed MOS model was used to validate the oxidation state assignment of elements not contained within the training set (Sr, Yb and Ho), thus demonstrating the applicability of the MOS model to a wide range of complexes. Chromium complexes with complex electronic structures were also shown to be accurately described by MOS analysis. Furthermore, it is shown that a combination of MOS analysis and FOD calculations provide an inexpensive method to gain insight into the electronic structure of singlet spin state (S = 0) [M(trop<sub>2</sub>dad)] transition metal complexes showing multireference character.<br>


Author(s):  
L. V. Dikhtievskaya ◽  
O. N. Labkovich ◽  
V. V. Shevchuk

It is shown that in principle, it is possible to obtain bischofite of high purity by converting bischofite lyes purified from heavy metals, iron and sulfate ions into an insoluble form (magnesium oxide, basic magnesium salts) using their hydrohydrolysis method, washing water-soluble impurities and synthesizing bischofite from a purified thermohydrolysis product and salt acid.


Sign in / Sign up

Export Citation Format

Share Document