Studies of azo and azoxy dyestuffs. Part 18. Kinetics and mechanism of the hydrolysis of 3- and 4-(p′-methoxyphenylazo)pyridines in aqueous sulfuric acid media

1986 ◽  
Vol 64 (11) ◽  
pp. 2115-2126 ◽  
Author(s):  
Erwin Buncel ◽  
Ikenna Onyido

The kinetics of hydrolysis of 4-(p′-methoxyphenylazo)pyridine, 1, and its 3-isomer, 2, have been studied in moderately concentrated sulfuric acid media at 25 °C. In all the acid solutions investigated, 1 reacted faster than 2; rate differences between the two compounds varied from ca. 1000-fold in the dilute region of acidity to ca. 250-fold in the more concentrated acid solutions. The observed first-order rate constants, kψ, for both substrates exhibit a maximum, at ca. 42% H2SO4 and 47% H2SO4 for 1 and 2 respectively. Activation parameters have also been determined. The pKa values for the second protonation equilibria of 1 and 2 have been evaluated and structures of the diprotonated species are discussed. Hydrolysis is shown to occur from the diprotonated substrates and two main mechanisms are operative. The first is an A-2 type mechanism, which involves rate-limiting attack of H2O on the aryl carbon center giving delocalized transition states and intermediates in which the pyridinium and azonium functions are involved in charge delocalization. Subsequent transfer of a proton and detachment of the leaving group are fast processes. In the second A-SE2 type mechanism, nucleophilic attack and transfer of the proton are fast steps preceding the slow general acid catalyzed separation of the leaving group. The difference in reactivity of the two compounds is attributed to differences in extent of charge delocalization in the transition states of the reactions: for 1 both the pyridinium and protonated azonium functions are involved whereas for 2 only the azonium function participates in charge delocalization.

1978 ◽  
Vol 56 (7) ◽  
pp. 935-940 ◽  
Author(s):  
John T. Edward ◽  
Graeme Welch ◽  
Sin Cheong Wong

The rates of hydrolysis of thioacetic, thiobenzoic, and three substituted thiobenzoic acids increase with concentration of solvent sulfuric or perchloric acid to a maximum in 30–40% acid and then decrease. Yates–McClelland r, Bunnett–Olsen [Formula: see text], and Hammett ρ parameters, and entropies of activation indicate an AAC2 mechanism over this range of acid concentrations. In acid concentrations above 50–60% the rates increase sharply and the same mechanistic criteria now indicate an AAc1 mechanism. The difference between the rate–acidity profile of thiobenzoic acid and that of ethyl thiolbenzoate can be explained by the different response of the activity coefficients of their transition states to increase in sulfuric acid concentration.


2005 ◽  
Vol 83 (9) ◽  
pp. 1391-1399 ◽  
Author(s):  
Robin A Cox

The mechanisms given in textbooks for both ester and amide hydrolysis in acid media are in need of revision. To illustrate this, benzimidates were chosen as model compounds for oxygen protonated benzamides. In aqueous sulfuric acid media they hydrolyze either by a mechanism involving attack of two water molecules at the carbonyl carbon to give a neutral tetrahedral intermediate directly, as in ester hydrolysis, or by an SN2 attack of two water molecules at the alkyl group of the alkoxy oxygen to form the corresponding amide, or by both mechanisms, depending on the structure of the benzimidate. The major line of evidence leading to these conclusions is the behavior of the excess acidity plots resulting from the rate constants obtained for the hydrolyses as functions of acid concentration and temperature. The first of these mechanisms is in fact very similar to one found for the hydrolysis of benzamides, as inferred from: (1) similar excess acidity plot behaviour; and (2) the observed solvent isotope effects for amide hydrolysis, which are fully consistent with the involvement of two water molecules, but not with one or with three (or more). This mechanism starts out as essentially the same one as that found for ester hydrolysis under the same conditions. Differences arise because the neutral tetrahedral intermediate, formed directly as a result of the protonated substrate being attacked by two water molecules (not one), possesses an easily protonated nitrogen in the amide and benzimidate cases, explaining both the lack of 18O exchange observed for amide hydrolysis and the irreversibility of the reaction. Protonated tetrahedral intermediates are too unstable to exist in the reaction media; in fact, protonation of an sp3 hybridized oxygen to put a full positive charge on it is extremely difficult. (This means that individual protonated alcohol or ether species are unlikely to exist in these media either.) Thus, the reaction of the intermediate going to product or exchanged reactant is a general-acid-catalyzed process for esters. For amide hydrolysis, the situation is complicated by the fact that another, different, mechanism takes over in more strongly acidic media, according to the excess acidity plots. Some possibilities for this are given.Key words: esters, amides, benzimidates, hydrolysis, excess acidity, mechanism, acid media.


2008 ◽  
Vol 63 (9) ◽  
pp. 603-608 ◽  
Author(s):  
Khamis A. Abbas

The rate constants of the hydrolysis of p-substituted benzonitriles with sulfuric acid solutions (18.2 M to 10 M) have been determined spectrophotometrically at (25.1±0.1) °C. It was found that the catalytic activity of sulfuric acid was strongly inhibited by water. The logarithms of the observed rate constants were correlated with different substituent inductive (localized) and resonance (delocalized) constants. The results of the correlation studies indicated that the rate-determining step of the hydrolysis of benzonitriles in 18.2 M sulfuric acid was the addition of a nucleophile, and the hydrolysis was clearly enhanced by the electron-withdrawing inductive effect, while the rate-determining step of the hydrolysis of p-substituted benzonitriles in 10.0 M sulfuric acid was most probably the protonation of benzonitriles, and the rate constants increased by both electron-donating resonance and inductive effects. A mixture of the two mechanisms most probably occurred in 15.3 to 17.0 M sulfuric acid. HSO4 − rather thanwater most probably acted as nucleophile in the hydrolysis of benzonitriles especially at high concentrations of sulfuric acid solutions.


2007 ◽  
Vol 85 (6) ◽  
pp. 421-431 ◽  
Author(s):  
Doreen Churchill ◽  
Julian M Dust ◽  
Erwin Buncel

We report herein the first kinetic study of a P=S containing organophosphorus pesticide, Diazinon (1), in the moderately concentrated acid region. Product analyses (31P NMR) show that reaction occurs only at the P centre. The rate-acidity profile (kobs vs. molarity of H2SO4) appears as a curve in which the initial slight downward trace (molarity = 1 to ca. 5) is followed by sharper upward curve (molarity ca. 5 to 14). Using treatments involving the excess acidity (X) method, the A-1 and A-2 mechanistic possibilities were found to be inoperative over the full acidity range. A novel mechanism is proposed for the higher acidity (X ca. 2–6) region. This mechanism involves proton transfer to P=S from hydronium ion with concomitant proton transfer from water, which effectively delivers hydroxide to the P centre in a variant of the A-SE2 process. A putative A-2 mechanism in this region is supplanted by the proposed A-SE2 variant where the cyclic array results in proton transfer being efficiently coupled with nucleophilic attack involving water. This constitutes the first report of rate-limiting proton transfer at the P=S functionality in acid hydrolysis of this class of organophosphorus neutroxins. A 600 000-fold acceleration in the decomposition of Diazinon is associated with the change of medium from neutral aqueous solution to the most acidic medium studied (X ca. 6). Key words: phosphorothioate ester hydrolysis, acid catalysis, rate-limiting proton transfer at P=S, excess acidity analysis, new A-SE2 variant mechanism.


2017 ◽  
Vol 64 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Thanapackiam P. ◽  
Kumaravel Mallaiya ◽  
Rameshkumar S. ◽  
Subramanian S.S.

Purpose This paper aims to evaluate the inhibition efficiency of norfloxacin on the corrosion of copper in 1.0 M nitric acid and 0.5 M sulfuric acid solutions. Design/methodology/approach Evaluation was carried out by electrochemical techniques such as electrochemical impedance spectroscopy and potentiodynamic polarization studies. Scanning electron microscopy was used, and it finally confirmed the existence of the adsorbed film. Findings The electrochemical measurements showed that norfloxacin has good inhibition efficiency on the corrosion of copper in 1.0 M nitric acid and 0.5 M sulfuric acid solutions. The inhibition action of norfloxacin in both of the corrosive media was observed to be of mixed type but with more of cathodic nature. The temperature dependence of the corrosion rate was studied in the temperature range from 35 to 55°C and the activation energy (Ea) was calculated. The adsorption of norfloxacin molecules on copper surface obeyed Langmuir adsorption isotherm. Studies on the potential of zero charge have been carried out to establish the mechanism of adsorption of the inhibitor onto the metal surface. The thermodynamic parameters such as the adsorption equilibrium constant (Kads) and the free energy of adsorption (ΔGads) were calculated. The value of free energy of adsorption very close to −40 kJmol−1 indicates that the adsorption is through electrostatic coulombic attraction and chemisorption. The decrease in value of Ea with the addition of inhibitor also shows the chemisorption of the inhibitor on the metal surface. Originality/value This paper indicates that norfloxacin can act as a good inhibitor for the corrosion of copper in both the acid media.


1998 ◽  
Vol 76 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Robin A Cox

Reaction rate constants obtained in moderately concentrated sulfuric acid for the hydrolysis of simple lactams of ring sizes five, six, seven, and eight as a function of acidity and temperature have been analyzed using the excess acidity kinetic method. The basicity constants for these substrates have been recalculated; the 13C NMR spectra used to obtain these values are very sensitive to medium effects. It was found that the basicities of the lactams at 0.003-0.1 M lactam concentration were over half a pK unit more basic than they were at 0.5 M lactam, presumably because of the medium effect. Apart from this, the rate constant results obtained at different times by different groups using different techniques for monitoring the kinetics are in adequate agreement. The excess acidity analysis showed that the kinetics could be fitted according to the "three-water-molecule followed by one-water-molecule" mechanistic scenario previously found, or could just as well be fitted by a "one-water-molecule followed by unknown mechanism" scenario, with the mechanistic change taking place at 50 wt.% sulfuric acid for all the substrates. Other evidence makes the latter seem the more likely possibility of the two, and activation parameters based upon the "one-water-molecule" process were determined. Sufficient data points to enable the unknown mechanism to be established were not present; possible mechanisms applicable in media more concentrated than 50 wt.% sulfuric acid are discussed. Previously obtained values of the parameter r, the number of water molecules involved with the substrate in A2 processes, are now questionable.Key words: amides, lactams, excess acidity, hydrolysis, mechanism.


Author(s):  
Perry A. Frey ◽  
Adrian D. Hegeman

Glycosyl group transfer underlies the biosynthesis and breakdown of all nucleotides, polysaccharides, glycoproteins, glycolipids, and glycosylated nucleic acids, as well as certain DNA repair processes. Glycosyl transfer consists of the transfer of the anomeric carbon of a sugar derivative from one acceptor to another, as in, which describes the transfer of a generic pyranosyl ring between nucleophilic atoms :X and :Y of acceptor molecules. The stereochemistry at the anomeric carbon is not specified in eq. 12-1, but the leaving group occupies the axial position in an α-anomer or the equatorial position in a β-anomer. The overall transfer can proceed with either retention or inversion of configuration. In biochemistry, the acceptor atoms can be oxygen, nitrogen, sulfur, or in the biosynthesis of C-nucleosides even carbon. The great majority of biological glycosyl transfer reactions involve transfer between oxygen atoms of different acceptor molecules. Enzymes catalyzing glycosyl transfer are broadly grouped according to whether the acceptor :Y–R2 in is water or another molecule. In the actions of glycosidases, the acceptor is water, and glycosyl transfer results in hydrolysis of a glycoside, a practically irreversible process in dilute aqueous solutions. In the action of glycosyltransferases, the acceptors are molecules with hydroxyl, amide, amine, sulfhydryl, or phosphate groups. The simplest nonenzymatic glycosyl transfer reaction is the hydrolysis of a glycoside, and early studies revealed the fundamental fact that glycosides are much less reactive toward hydrolysis in basic solutions than in acidic solutions. This fact underlies much that is known about the mechanism of glycosyl transfer; that is, the anomeric carbon of a glycoside is remarkably unreactive toward direct nucleophilic attack, but it becomes reactive when one of the oxygens is protonated by an acid, as illustrated in fig. 12-1 for the acid-catalyzed hydrolysis of a generic glycoside. The reaction by both mechanisms in fig. 12-1 proceeds by pre-equilibrium protonation of the glycoside to form oxonium ion intermediates, which are subject to hydrolysis by water. The two mechanisms in fig. 12-1 are of interest. The mechanism proceeding through exocyclic cleavage of the glycoside has historically been regarded as the more likely, and for this reason, the route through endocyclic cleavage has received little consideration.


Sign in / Sign up

Export Citation Format

Share Document