Reactions of the super-electrophile, 2-(2′,4′-dinitrophenyl)-4,6-dinitrobenzotriazole 1-oxide, with methoxide and tert-butoxide: basicity and steric hindrance as factors in σ-complex formation versus nucleophilic displacement

1991 ◽  
Vol 69 (6) ◽  
pp. 978-986 ◽  
Author(s):  
Julian M. Dust ◽  
Erwin Buncel

The course of the reactions of methoxide and tert-butoxide with 2-(2′,4′-dinitrophenyl)-4,6-dinitrobenzotriazole 1-oxide (4) clearly shows that the C-7 electrophilic site is significantly more reactive than the C-1′ site of the substrate. The reaction pathways of these alkoxides, which differ in basicity (as a measure of nucleophilicity) and steric bulk, were followed by 400 MHz 1H nuclear magnetic resonance spectroscopy. While both alkoxides lead to immediate formation of the respective C-7 anionic σ-adducts, a greater percentage of C-7 adduct formation occurs with methoxide as attacking nucleophile. Reaction with excess alkoxide results in attack at C-1′ being observed, as well. This leads to formation of metastable C-1′ σ-adducts, whose rapid decomposition results in formation of 2,4-dinitrophenyl ethers and the dinitrobenzotriazole 1-oxyanion in an overall nucleophilic displacement reaction. Under these excess conditions, methoxide also causes a faster rate of displacement than does tert-butoxide as nucleophile. These results are discussed on the basis of the basicity of the nucleophiles, the relative electrophilicity of the positions in the substrate (C-7 versus C-1′), the steric hindrance involved in attack and in the resultant C-7 and C-1′ complexes, and in terms of an activation energy/reaction coordinate profile comparing the pathways for attack at the two electrophilic sites. Key words: anionic σ-complexes, super-electrophiles, aromatic nucleophilic substitution (SN Ar).


1988 ◽  
Vol 66 (7) ◽  
pp. 1712-1719 ◽  
Author(s):  
Erwin Buncel ◽  
Julian M. Dust

Reaction of the novel superelectrophiles 2-N-(2′,4′-dinitrophenyl)- and 2-N-(4′-nitrophenyl)-4,6-dinitrobenzotriazole 1-oxides, 3, and 4, possessing two electrophilic centres, with the ambident nucleophile potassium phenoxide in (CD3)2SO was followed by 400 MHz 1H nuclear magnetic resonance spectroscopy. A dichotomy in the reaction pathways has been observed. With MeO−, attack at C-7 leads to reversible adduct formation, while attack at C-1′ results in irreversible N-2: C-1′ bond scission via the metastable C-1′ adduct. In contrast, the reaction of 3 and 4 with PhO− proceeds by a two-pronged attack: formation of C-7 carbon-bonded phenoxide adducts via the ortho and para carbon sites, and oxygen-based cleavage products by attack at the C-1′ position, accompanied by N-2:C-1′ bond scission, in accord with the ambident reactivity of PhO−. Significantly, in this case reaction of both C-7 and C-1′ is effectively irreversible. Moreover, the reaction of phenoxide with either 3 or 4 shows striking differences compared to the reaction of PhO− with 2-N-(picryl)-4,6-dinitrobenzotriazole 1-oxide, 1. Reaction of PhO− with 1 resulted only in O-attack at C-1′ and N-2:C-1′ bond scission; there was no evidence for C-7 adduct formation via O- or C-attack. This marked difference in behaviour can be attributed to the decreased susceptibility to C-1′ attack exhibited by 3 and 4 as compared to 1 and arises from the successive removal of electron-withdrawing nitro groups from the 2-N′-nitroaryl moiety in the series 1 → 3 → 4. The reactions are discussed on the basis of selectivity considerations and an activation energy/reaction coordinate profile comparing the pathways for both C-attack at C-7 and O-attack at C-l′ as electrophilicity (delocalizability) is progressively modulated in the reaction series.



2021 ◽  
Vol 22 (14) ◽  
pp. 7497
Author(s):  
Elena Chugunova ◽  
Gabriele Micheletti ◽  
Dario Telese ◽  
Carla Boga ◽  
Daut Islamov ◽  
...  

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Тamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.



1994 ◽  
Vol 72 (1) ◽  
pp. 218-226 ◽  
Author(s):  
Julian M. Dust ◽  
Erwin Buncel

To elucidate the reactivity of super-electrophiles such as 4,6-dinitrobenzofuroxan as compared to normal electrophiles such as 1,3,5-trinitrobenzene, reaction of isopropoxide ion (iPrO−) with a series of ambident super-electrophiles was studied by 400 MHz 1H nuclear magnetic resonance spectroscopy. The 2-(nitroaryl)-4,6-dinitrobenzotriazole 1-oxides, 1–3, possess both a super-electrophilic (C-7) site and a normal electrophilic (C-1′) site. Nucleophiles can demonstrate selectivity for attack at C-7, which leads to formation of persistent anionic σ-adducts (Meisenheimer complexes), as compared to C-1′, which leads to N-2:C-1′ bond scission. The most reactive substrate, 2-(2′,4′,6′-trinitrophenyl)-4,6-dinitrobenzotriazole 1-oxide (Pi-DNBT, 1) was found to be the least selective substrate in C-7 adduct formation, while 2-(2′,4′-dinitrophenyl)- and 2-(4′-nitrophenyl)-4,6-dinitrobenzotriazole 1-oxides (DNP-DNBT, 2, and NP-DNBT, 3, respectively) showed increasing selectivity towards iPrO−, in turn. These results are discussed on the basis of overall selectivity for C-7 adduct formation and the relative selectivity of iPrO− as compared to methoxide and tert-butoxide ions. The conclusions are illustrated using comparative energy profiles. In terms of pathways for decomposition of the adducts, the C-7 adducts decompose via dissociation back to substrate and nucleophile and, thence, through C-1′ adduct formation to the scission products. However, for 1, the C-7 adduct 1a has now been found to decompose to 7-isopropyl-2-picryldinitrobenzotriazole, 1c. The possible mechanism of this formal internal redox will be discussed.



1978 ◽  
Vol 56 (22) ◽  
pp. 2906-2913 ◽  
Author(s):  
Richard A. Perry ◽  
Robert W. Lockhart ◽  
Masayuki Kitadani ◽  
Yuan L. Chow

Photolysis of three alkenyl nitrosamines in the presence of oxygen or bromotrichloromethane resulted in the interception of the intermediate C-radicals by these radical trapping agents and the reaction pathways were cleanly diverted leading to the formation of the nitrate esters or halides with pyrrolidine rings as the primary products. The exo-nitrates in the oxidative photolyses decomposed by secondary ionic pathways; these reactions were hydrolysis, nitrous acid elimination and a cleavage reaction (promoted by a β-amino group), among others. The efficiency of the cleavage reaction is controlled by a stereoelectronic factor that requires the participating bonds and the lone-pair nitrogen orbital be oriented in an antiperiplanar conformation. When such a conformation exists in a rigid or semiflexible framework, cleavage occurs extensively. However, in freely rotating acyclic systems, cleavage does not occur even when the required conformation can be attained. Only halides resistant to intramolecular nucleophilic displacement to form the aziridinium intermediates were isolated in the bromotrichloromethane trapping experiments. Other exo-halides underwent solvolysis via aziridinium ion intermediates.



ChemInform ◽  
2010 ◽  
Vol 32 (37) ◽  
pp. no-no
Author(s):  
A. Fernandez-Mateos ◽  
M. Rentzsch ◽  
L. Rodriguez Sanchez ◽  
R. Rubio Gonzalez


2020 ◽  
Author(s):  
Bárbara Pereira Peixoto ◽  
José Walkimar de M. Carneiro ◽  
Rodolfo Goetze Fiorot

Nucleophilic aliphatic substitution reactions constitute important steps in the synthesis of substances with biological activity and industrial appeal, beyond to participating in steps in biosynthetic routes of natural products. Unimolecular (SN1) and bimolecular (SN2) pathways can be understood as limiting cases of a mechanistic continuum. In between them, borderline mechanisms are proposed. The preference for one path over another depends on several factors, such as the structure of the substrate, the nucleophile and the solvent used. This plurality is still a topic of discussion and needs further understanding. In this context, the present work aims to rationalize the preferential reaction pathway for nucleophilic aliphatic substitutions, whose substrates do not fit only in the uni- and bimolecular models, by identifying lower energy reaction pathways due to the structural and electronic characteristics. The evaluation was carried out by molecular modeling at the Density Functional Theory (DFT) level, simulating substrates with the nucleofuge (Cl and NH3 + ) connected to secondary carbon atoms, with the computational method M06-2X/aug-cc-pVTZ, previously validated according to geometrical and energetic parameters. Besides, we checked the effect of a polar solvent with high dielectric constant in the reaction pathways. The analyzed substrates demonstrated preference for the bimolecular mechanism and the influence of a solvent in these reactions was evident.



1999 ◽  
Vol 305 (5-6) ◽  
pp. 408-412 ◽  
Author(s):  
Moustapha Lachgar ◽  
Yvonnick Le Coat ◽  
Roger Azria ◽  
Michel Tronc ◽  
Eugen Illenberger


Tetrahedron ◽  
2001 ◽  
Vol 57 (23) ◽  
pp. 4873-4879 ◽  
Author(s):  
A. Fernández-Mateos ◽  
M. Rentzsch ◽  
L. Rodrı́guez Sánchez ◽  
R. Rubio González


Sign in / Sign up

Export Citation Format

Share Document