Article

1998 ◽  
Vol 76 (3) ◽  
pp. 307-312
Author(s):  
A Wallace Cordes ◽  
Robert C Haddon ◽  
Robin G Hicks ◽  
Richard T Oakley ◽  
Kristen E Vajda

Electroreduction of the 2,5-thiophene-bridged bis(1,2,3,5-diselenadiazolylium) salt [T-2,5-Se][SbF6]2 in acetonitrile, at a Pt wire and in the presence of iodine, affords a highly conductive ( sigma = 102 S cm-1 at 293 K) 1:1 charge-transfer (CT) salt [T-2,5-Se][I], the crystal structure of which has been determined by single-crystal X-ray diffraction. The crystals belong to the orthorhombic space group Fm2m, a = 3.544(2), b = 10.9808(16), c = 31.464(5) Å , V = 1224.5(7) Å 3. The structure consists of perfectly superimposed pi -stacks of molecular units bridged by columns of disordered iodines. This packing motif is similar to that of the related 1,3-benzene-bridged derivative [1,3-Se][I], but the lateral intermolecular Se···Se interactions linking adjacent pi -stacks are considerably shorter, indicative of a more isotropic electronic structure for [T-2,5-Se][I]. Magnetic susceptibility measurements on [T-2,5-Se][I] nonetheless indicate a phase transition to a diamagnetic state near 200 K, behaviour similar to that observed for [1,3-Se][I]. The electronic structures and transport properties of the two compounds are discussed in the light of extended Hückel band-structure calculations.Key words: diselenadiazolyl, diradical, charge-transfer salt, magnetic susceptibility, crystal structure.

2011 ◽  
Vol 67 (3) ◽  
pp. 244-249 ◽  
Author(s):  
Pilar García-Orduña ◽  
Slimane Dahaoui ◽  
Claude Lecomte

The crystal structure of the 2:1 charge-transfer complex of tetrathiafulvalene [2,2′-bis(1,3-dithiolylidene)] and bromanil (tetrabromo-1,4-benzoquinone) [(TTF)2-BA, (C6H4S4)2–C6Br4O2] has been determined by X-ray diffraction at room temperature, 100 and 25 K. No structural phase transition occurs in the temperature range studied. The crystal is made of TTF–BA–TTF sandwich trimers. A charge-transfer estimation between donor and acceptor (0.2 e) molecules is proposed in comparison to the molecular geometries of TTF–BA and TTF and BA isolated molecules. Displacement parameters of the molecules have been modeled with the TLS formalism.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


1979 ◽  
Vol 57 (1) ◽  
pp. 57-61 ◽  
Author(s):  
R. Melanson ◽  
F. D. Rochon

The crystal structure of [Pt(diethylenetriamine)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 12.486(6), b = 13.444(7), c = 14.678(11) Å, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.050 and a weighted Rw = 0.045.The coordination around the platinum atom is square planar. Guanosine is bonded to platinum through N(7). The purine planar ring makes an angle of 62.7° with the platinum coordination plane. The structure is stabilized by hydrogen bonding.


Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Koichi Momma ◽  
Ritsuro Miyawaki ◽  
Yoshitaka Matsushita ◽  
...  

Abstract Tsugaruite was originally defined as a lead-arsenic sulfosalt from the Yunosawa mine, Aomori Prefecture, Japan. Until recently its crystal structure remained unsolved and its actual classification in the sulfosalt realm was unknown. Here the refinement of the crystal structure of tsugaruite using single-crystal X-ray diffraction data is reported. The mineral is orthorhombic, space group P2nn, with unit-cell parameters a = 8.0774(10), b = 15.1772(16), c = 38.129(4) Å, V = 4674.3(9) Å3, in agreement with previous studies. The solution of the crystal structure of this mineral revealed Cl occupying a specific position. Chlorine was thus sought and found using the electron microprobe; the average of six spot analyses gave (in wt.%): Pb 68.04, As 12.83, S 18.29, Cl 0.63, total 99.80. The empirical formula, calculated on the basis of Pb + As = 43 atoms per formula unit, is Pb28.26As14.74S49.08Cl1.52. Tsugaruite is an N = 4 plesiotypic derivative of the homologous series of Pb-Sb chloro-sulfosalts having the general formula Pb(2+2N)(Sb,Pb)(2+2N)S(2+2N)(S,Cl)(4+2N)ClN. It has a Cl/(Cl + S) atomic ratio close to that of other known Pb-Sb chloro-sulfosalts (pillaite, pellouxite) and slightly higher than that of dadsonite.


2020 ◽  
Vol 75 (1-2) ◽  
pp. 217-223
Author(s):  
Volodymyr Babizhetskyy ◽  
Jürgen Köhler ◽  
Yuriy Tyvanchuk ◽  
Chong Zheng

AbstractThe title compound was prepared from the elements by arc-melting. The crystal structure was investigated by means of single-crystal X-ray diffraction. It crystallizes in the TbFeSi2 structure type, orthorhombic space group Cmmm, a = 4.0496(8), b = 16.416(2), c = 3.9527(6) Å, Z = 4, R1 = 0.041, wR2 = 0.11 for 207 unique reflections with Io > 2 σ(Io) and 19 refined parameters. The Fe position is not fully occupied and the refinement results in a composition GdFe0.68Si2 in agreement with a chemical analysis. The structure consists of zig-zag chains of Si(1) atoms which are terminally bound to additional Si(2) atoms. For an ordered variant GdFe0.5Si2 the Zintl concept can be applied which results in formal oxidation states Gd3+(Fe2+)0.5Si(1)1−Si(2)3−. The electronic structure of this variant GdFe0.5Si2 was analyzed using the tight-binding LMTO method and the results confirm the simple bonding picture.


1985 ◽  
Vol 40 (12) ◽  
pp. 1631-1637 ◽  
Author(s):  
Ruth Christophersen ◽  
Paul Klingelhöfer ◽  
Ulrich Müller ◽  
Kurt Dehnicke

Abstract The pyridine complexes of cyclo-thiazeno vanadium dichloride, [VCl2(N3S2)py] and [VCl2(N3S2)(py)2] were synthesized by reactions of polymeric VCl2(N3S2) with varying amounts of pyridine in CH2Cl2. The compounds were characterized by their IR spectra as well as by their 51V NM R spectra. The crystal structure of [VCl2(N3S2)(C5H5N)] was determined by means of X-ray diffraction (1582 independent observed reflexions, R = 0.031). Crystal data: orthorhombic, space group Pnma, a = 1372, b - 2261, c - 1068 pm, Z = 12. In the lattice there are two monomeric, crystallographically independent molecules [VCl2(N3S2)(C5H5N)], which differ only slightly. The vanadium atoms have a trigonal bipyramidal coordination with the N atom of the pyridine molecule and one chlorine atom in apical positions, and with one chlorine atom and the N atoms of the cyclo-thiazeno ligand in equatorial positions. The VN bond lengths of the planar VN3S2 ring of 174 pm correspond to double bonds


1990 ◽  
Vol 43 (12) ◽  
pp. 2083 ◽  
Author(s):  
DC Craig ◽  
VJ James ◽  
JD Stevens

The crystal structure of the title compound (1) has been determined by X-ray diffraction. Crystals of (1) are orthorhombic, space group P21212 with a 11.425(1), b 24.916(1), c 5.8952(3)Ǻ, Z 4. Refinement on 1675 observed reflections measured with Cu Kα radiation converged at R 0.034. The seven- membered ring adopts a boat conformation in which the pseudo plane of symmetry passes through the ring oxygen.


Author(s):  
Srinivasa Thimmaiah ◽  
Zachary Tener ◽  
Tej N. Lamichhane ◽  
Paul C. Canfield ◽  
Gordon J. Miller

AbstractThe γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn


1994 ◽  
Vol 49 (9) ◽  
pp. 1263-1266 ◽  
Author(s):  
A. Franken ◽  
W. Preetz

By electrochemical oxidation of [B6H6]2- in the presence of nitrite ions and of the base DBU in dichlorom ethane solution the μ-nitroso-bis(pentahydrohexaborate) [B6H5(NO)B6H5]3- ion is formed and can be isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of the Cs salt has been determined from single crystal X-ray diffraction analysis. Cs3[B6H5(NO)B6H5] is orthorhombic, space group Pnma with a = 16.2303(13), b = 12.245(6), c = 25.444(2) Å. The unit cell contains three crystallographically independent anions with nearly C2v symmetry but differently distorted B6 cages


Sign in / Sign up

Export Citation Format

Share Document