Synthesis of 5-phenyl-10-methyl-7H- pyrimido[4,5-f][1,2,4]triazolo[4,3-a][1,4]diazepine and its evaluation as an anticonvulsant agent

1999 ◽  
Vol 77 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Oludotun A Phillips ◽  
KS Keshava Murthy ◽  
Charles Y Fiakpui ◽  
Edward E Knaus

The homolytic benzoylation (benzoyl radical) of 5-tert-butylcarbonylaminopyrimidine (6, 1 equiv.) in the presence of benzaldehyde (3 equiv.), water, sulfuric acid, and acetic acid, upon treatment with FeSO4·7H2O (3 equiv.) and 70% t-BuOOH (3 equiv.) at 5-10°C for 10 min afforded a mixture of 4-benzoyl-5-tert-butylcarbonylaminopyrimidine (7, 23%), 4,6-dibenzoyl-5-tert-butylcarbonylaminopyrimidine (8, 44%), and 4-benzoyl-5-tert-butylcarbonylamino-6- methyl pyrimidine (9, 10%). When a similar reaction was performed using 1 equiv. each of PhCHO, FeSO4·7H2O, and t-BuOOH, to prevent formation of the 4,6-dibenzoyl product 8, the monobenzoyl (7, 38%) and 4-benzoyl-6-methyl (9, 6%) products were obtained. A similar homolytic benzoylation of 5-bromopyrimidine (10) using 1.5 equiv. of reagents to generate the benzoyl radical afforded 4-benzoyl-5-bromopyrimidine (11, 61%) as the predominant product. Elaboration of 11 via a six-step reaction sequence afforded 2-hydrazino-5-phenyl-3H-pyrimido[5,4-e][1,4]diazepine (17) in 5.2% overall yield. The acid-catalyzed reaction of 17 with triethyl orthoacetate gave the title compound 5-phenyl-10-methyl-7H-pyrimido[4,5-f][1,2,4]triazolo[4,3-a][1,4]diazepine (18, 62%). The triazolo compound 18 was more potent than valproic acid (Depakene(r)) in both the subcutaneous metrazol (scMet) and maximal electroshock (MES) anticonvulsant screens, and more potent than clonazepam in the MES anticonvulsant screen but less potent than clonazepam in the scMet anticonvulsant screen.Key words: homolytic benzoylation, pyrimidines, pyrimidodiazepines, anticonvulsants.


2006 ◽  
Vol 3 (12) ◽  
pp. 940-942 ◽  
Author(s):  
Shahnaz Perveen ◽  
Tahira Sarfaraz ◽  
Khalid Khan ◽  
Wolfgang Voelter


ChemInform ◽  
2007 ◽  
Vol 38 (24) ◽  
Author(s):  
Shahnaz Perveen ◽  
Tahira B. Sarfaraz ◽  
Khalid M. Khan ◽  
Wolfgang Voelter


1992 ◽  
Vol 70 (9) ◽  
pp. 2491-2501 ◽  
Author(s):  
Peter Yates ◽  
Magdy Kaldas

A mixture of the epimeric ethyl 2-hydroxynorbornane-2-acetates (1) on treatment with concentrated sulfuric acid is converted in turn to the lactones of exo-2-hydroxynorbornane-1-acetic acid (4), endo-6-hydroxynorbornane-endo-2-acetic acid (5), and exo-3-hydroxynorbornane-exo-2-acetic acid (6). With trifluoroacetic acid or 50% sulfuric acid, 1 gives 4, but this does not react further. In concentrated sulfuric acid the parent acids of 1 (7) and (E)- and (Z)-(norborn-2-ylidene)acetic acids (8 and 9) and their ethyl esters (10 and 11) give 6 as the infinity product. A mixture of 5-norbornene-endo- and exo-2-acetic acid (30 and 31) on treatment with 50% sulfuric acid gives 4, 5, 6, and exo-2-hydroxynorbornane-syn-7-acetic acid lactone (33). Routes are proposed for the formation of the lactones that involve protonation and carbocation formation followed by rearrangement via Wagner–Meerwein, endo-6,2-hydride, and exo-3,2-hydride shifts in decreasing order of preference. It is postulated that the usual inhibition of the rearrangement of tertiary to secondary norbornyl carbocations is not operative when the third substituent is a carboxymethyl group or its derivatives because of the electron-withdrawing properties of such groups relative to simple alkyl groups. A preliminary study has shown that exo-5-acetyloxy-endo-2-hydroxynorbornane-exo-2-acetic acid (35) with 50% sulfuric acid gives four products that are considered to be the γ-lactones of endo-5-acetyloxy- and endo-5-hydroxynorbornane-1-acetic acid (38 and 39) and exo-2-acetyloxy-1-hydroxy-and 1,2-dihydroxynorbornane-syn-7-acetic acid (40 and 41). Protonation of either the hydroxyl or acetyloxyl group is postulated, giving two carbocations that undergo rearrangements as in the case of 1, together with 3,2-hydroxyl shifts. The structures of the lactones are assigned on the basis of spectroscopy, reactivity, and analogy. The reactions of the lactones, which lead to a variety of hydroxy- and oxonorbornaneacetic acids, illustrate their synthetic potential.



Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.



1973 ◽  
Vol 4 (45) ◽  
pp. no-no
Author(s):  
D. W. KUEHL ◽  
J. D. NELSON ◽  
R. CAPLE
Keyword(s):  


1973 ◽  
Vol 51 (6) ◽  
pp. 974-977 ◽  
Author(s):  
Malcolm B. Perry ◽  
Virginia Daoust

5-Deoxy-D-lyxose underwent base-catalyzed addition with nitromethane to give a mixture of 1,6-dideoxy-1-nitro-D-galactitol and 1,6-dideoxy-1-nitro-D-talitol (ca. 2:1). Acetylation of the crystalline 1,6-dideoxy-1-nitro-D-galactitol gave 2,3,4,5-tetra-O-acetyl-1,6-dideoxy-1-nitro-D-galactitol which on treatment with methanolic ammonia afforded 2-acetamido-1,2,6-trideoxy-1-nitro-D-talitol and 2-acetamido-1,2,6-trideoxy-1-nitro-D-galactitol (ca. 3:1) which under the modified Nef reaction conditions gave 2-acetamido-2,6-dideoxy-D-talose and 2-acetamido-2,6-dideoxy-D-galactose respectively. The glycoses were converted to 2-amino-2,6-dideoxy-D-talose hydrochloride and 2-amino-2,6-dideoxy-D-galactose hydrochloride on hydrolysis with hydrochloric acid.A similar reaction sequence applied to 5-deoxy-L-lyxose afforded the L-enantiomorphic intermediates, and gave 2-amino-2,6-dideoxy-L-talose hydrochloride and 2-amino-2,6-dideoxy-L-galactose hydrochloride as final products.



1972 ◽  
Vol 94 (4) ◽  
pp. 1247-1249 ◽  
Author(s):  
R. S. Schwartz ◽  
H. Yokokawa ◽  
E. W. Graham




1975 ◽  
Vol 48 (11) ◽  
pp. 3107-3110 ◽  
Author(s):  
Tohr Yamanaka
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document