Film coating of seeds with Bacillus cereus RS87 spores for early plant growth enhancement

2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.

2021 ◽  
Vol 2 ◽  
pp. 234-239
Author(s):  
Nada Kholifah ◽  
Ardiana Kartika B ◽  
Teguh Pribadi

PGPR (Plant Growth Promoting Rhizobacteria) is a substance that helps plant growth with the help of rhizosphere microorganisms. PGPR propagation can be done with liquid media. This PGPR propagation needs to be done because this substance has many benefits for agricultural cultivation. The application of PGPR to the test plant, namely the pakcoy plant, proved that there was an effect of giving PGPR to the plant. Observations on the test plants were carried out by observing several observation variables such as plant height, root length, number of leaves, wet weight and dry weight. The results of these observations showed that the effect on the test plants was seen in the variables of root length, wet weight, and dry weight. Meanwhile, the variable plant height and number of leaves did not show a visible difference. 


2019 ◽  
Vol 50 (3) ◽  
pp. 181-190
Author(s):  
A.K. Akintokun ◽  
E. Ezaka ◽  
P.O. Akintokun ◽  
O.B. Shittu ◽  
L. B. Taiwo

Abstract The use of plant growth promoting rhizobacteria (PGPR) as biofertilizer is a relatively safer, environment friendly and cost effective. This work was designed to assess plant growth promoting abilities of rhizobacteria and evaluate their effect on germination and growth of maize. The bacteria were isolated and screened for plant growth promoting abilities using Pikovskaya agar, Aleksandrov agar and Jensen media. Twelve isolates that showed multiple attributes were further screened for indole acetic acid (IAA) and gibberellic acid (GA) production; best five isolates were selected for further studies. The results of IAA and GA production showed a considerable amount of IAA and GA produced by the isolates which ranged between 9–94 and 21–97 mg l–1, respectively. The selected isolates identified as Bacillusmojavensis, Pseudomonas aeruginosa, Alcaligenes faecalis, Pseudomonas syringae and Bacillus cereus showed a significant difference(P≤0.05) in the amount of potassium(K) and phosphorus(P) solubilized at different source of K (KCl and mica powder) and P (Ca2PO4 and rock phosphate). The isolates also recorded significant level of nitrogen fixing ability with Alcaligenes faecalis strain P156 fixing the highest amount of nitrogen (11.4 mg N fixed per l) and least by Bacillus mojavensis strain NBSL51 (6.3 mg N fixed per l).The results of plant inoculation test showed that Bacillus cereus strain 20UPMNR significantly enhanced the root and shoot dry weight. All the selected isolates enhanced shoot and root length except Bacillus mojavensis which produced less effect on root length when compared to the control. These results have provided vital information for the development of a bio fertilizer for maize.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


2009 ◽  
Vol 33 (5) ◽  
pp. 1227-1235 ◽  
Author(s):  
Luciano Kayser Vargas ◽  
Bruno Brito Lisboa ◽  
Gilson Schlindwein ◽  
Camille Eichelberger Granada ◽  
Adriana Giongo ◽  
...  

In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.


Author(s):  
Lynda Kelvin Asogwa ◽  
Frank C. Ogbo

Aims: To isolate Plant Growth Promoting Bacillus strain from maize roots, to evaluate its biocontrol potentials and to characterize the isolate using16S rRNA sequencing. Place and Duration of Study: Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, between February 2019 and March 2020. Methodology: The isolation of Plant Growth Promoting Rhizobacteria (PGPR) from maize roots was done using Pikovskaya (PVK) agar. Quantitative determination of phosphate was carried out using PVK broth. Evaluations of other plant growth promoting properties were carried out such as IAA, etc. Fusarium and Enterobacter plant pathogens were isolated from diseased maize plants. The in vitro antagonism effects of the PGPR isolates against the pathogens were analyzed using the dual culture plate technique. The pot experiment was carried out in a completely randomized design. Plant characteristics such as plant height, shoot  and root weight, chlorophyll content, as well as disease assessment were recorded accordingly. The organisms were identified using phenotypic and molecular methods. Results: Seven PGPR bacteria were isolated from maize (Zea mays) roots using PVK agar. Aneurinibacillus migulanus gave the highest solubilization index of 4.21 while isolate IS48 gave the lowest solubilization index of 1.47. A. migulanus produced IAA, ammonia and cellulase enzyme but no hydrogen cyanide. The organism showed antagonism activity against the two tested phytopathogens. In the pot experiment, A. migulanus treated plants showed a statistically insignificant difference in maize plant height at P=0.05 but gave significant increases in shoot and root wet weights. The organism offered 83.33% and 71.43% protection against Enterobacter and Fusarium pathogens respectively in the pot experiment. Conclusion: A. migulanus solubilized phosphate in addition to other plant growth promoting  properties. It showed biocontrol potentials both in vitro and in vivo and thus can be used as substitute for synthetic agrochemicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hu Zhou ◽  
Zuo-hua Ren ◽  
Xue Zu ◽  
Xi-yue Yu ◽  
Hua-jun Zhu ◽  
...  

Bacillus cereus YN917, obtained from a rice leaf with remarkable antifungal activity against Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible biocontrol properties. YN917 strain exhibits multiple plant growth-promoting and disease prevention traits, including production of indole-3-acetic acid (IAA), ACC deaminase, siderophores, protease, amylase, cellulase, and β-1,3-glucanase, and harboring mineral phosphate decomposition activity. The effects of the strain YN917 on growth promotion and disease prevention were further evaluated under detached leaf and greenhouse conditions. The results revealed that B. cereus YN917 can promote seed germination and seedling plant growth. The growth status of rice plants was measured from the aspects of rice plumule, radicle lengths, plant height, stem width, root lengths, fresh weights, dry weights, and root activity when YN917 was used as inoculants. YN917 significantly reduced rice blast severity under detached leaf and greenhouse conditions. Genome analysis revealed the presence of gene clusters for biosynthesis of plant promotion and antifungal compounds, such as IAA, tryptophan, siderophores, and phenazine. In summary, YN917 can not only be used as biocontrol agents to minimize the use of chemical substances in rice blast control, but also can be developed as bio-fertilizers to promote the rice plant growth.


2011 ◽  
Vol 24 (5) ◽  
pp. 533-542 ◽  
Author(s):  
Dong-Dong Niu ◽  
Hong-Xia Liu ◽  
Chun-Hao Jiang ◽  
Yun-Peng Wang ◽  
Qing-Ya Wang ◽  
...  

Bacillus cereus AR156 is a plant growth–promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kanza Batool ◽  
Fatima tuz Zahra ◽  
Yasir Rehman

Arsenic (As) is a well-known toxic metalloid found naturally and released by different industries, especially in developing countries. Purple nonsulfur bacteria (PNSB) are known for wastewater treatment and plant growth promoting abilities. As-resistant PNSB were isolated from a fish pond. Based on As-resistance and plant growth promoting attributes, 2 isolates CS2 and SS5 were selected and identified as Rhodopseudomonas palustris and Rhodopseudomonas faecalis, respectively, through 16S rRNA gene sequencing. Maximum As(V) resistance shown by R. faecalis SS5 and R. palustris CS2 was up to 150 and 100 mM, respectively. R. palustris CS2 showed highest As(V) reduction up to 62.9% (6.29±0.24 mM), while R. faecalis SS5 showed maximum As(III) oxidation up to 96% (4.8±0.32 mM), respectively. Highest auxin production was observed by R. palustris CS2 and R. faecalis SS, up to 77.18±3.7 and 76.67±2.8 μg mL−1, respectively. Effects of these PNSB were tested on the growth of Vigna mungo plants. A statistically significant increase in growth was observed in plants inoculated with isolates compared to uninoculated plants, both in presence and in absence of As. R. palustris CS2 treated plants showed 17% (28.1±0.87 cm) increase in shoot length and 21.7% (7.07±0.42 cm) increase in root length, whereas R. faecalis SS5 treated plants showed 12.8% (27.09±0.81 cm) increase in shoot length and 18.8% (6.9±0.34 cm) increase in root length as compared to the control plants. In presence of As, R. palustris CS2 increased shoot length up to 26.3% (21.0±1.1 cm), while root length increased up to 31.3% (5.3±0.4 cm), whereas R. faecalis SS5 inoculated plants showed 25% (20.7 ± 1.4 cm) increase in shoot length and 33.3% (5.4 ± 0.65 cm) increase in root length as compared to the control plants. Bacteria with such diverse abilities could be ideal for plant growth promotion in As-contaminated sites.


Sign in / Sign up

Export Citation Format

Share Document