Identification of oligopeptides mimicking the receptor-binding domain of Hantaan virus envelope glycoprotein from a phage-displayed peptide library

2009 ◽  
Vol 55 (6) ◽  
pp. 664-671 ◽  
Author(s):  
Xin Lü ◽  
Wen Yin ◽  
Qiaoxin Yang ◽  
Yingfeng Lei ◽  
Jing Yang ◽  
...  

Attachment of enveloped viruses to cells is triggered by the receptor-binding domain (RBD) on envelope glycoproteins (GP) binding to receptors located on the cell surface. To date, recognized receptors and RBD of hantaan virus (HTNV) have not been exactly defined. In this study, one monoclonal antibody (MAb) 3G1 possessing high neutralizing activity, which is directed against HTNV envelope glycoprotein G2, was used to determine the crucial motif of RBD. Peptide ligands binding to MAb 3G1 were selected from a 12 amino acid peptide library displayed on filamentous phages. After 3 rounds of selection, the binding capacity between phages and MAb 3G1 was examined byELISA. Afterwards the positive phage clones with high binding activity to MAb 3G1 were chosen and sequenced. The peptide sequences of positive phage clones were compared with that of HTNV 76–118 strain G2. A motif Y/F/WPW(X)HX1–2HY, aligned to the primary sequences of G2 96YPWHTAKCHY105, was identified from the peptide inserts in the 9 positive clones. Positive phages and synthesized peptide containing the motif were bound significantly to virus-susceptible cell (Vero-E6) membranes by ELISA and immunofluorescence assay, respectively. Therefore, the sequence on G2 between amino acid 96 and 105 may be a key motif of HTNV RBD recognized by viral receptors on target cell membranes. Further characterization of the motif would provide useful information in understanding of the cellular entry of HTNV.

Author(s):  
Huichao Wang ◽  
Tong Zhao ◽  
Shuhui Yang ◽  
Liang Zou ◽  
Xiaolong Wang ◽  
...  

Abstract Under the severe situation of the current global epidemic, researchers have been working hard to find a reliable way to suppress the infection of the virus and prevent the spread of the epidemic. Studies have shown that the recognition and binding of human angiotensin-converting enzyme 2 (ACE2) by the receptor-binding domain (BRD) of spike protein on the surface of SARS-CoV-2 is a crucial step for SARS-CoV-2 to invade human receptor cells, and blocking this process can inhibit the virus from invading human normal cells. Plasma treatment can disrupt the structure of the RBD and effectively block the binding process. However, the mechanism by which plasma blocks the recognition and binding between the two is not clear. In this study, reaction process between reactive oxygen species (ROS) in plasma and the molecular model of RBD was simulated using a reactive molecular dynamics method. The results showed that the destruction of RBD molecule by ROS was triggered by hydrogen abstraction reactions. O and OH abstracted H atoms from RBD, while the H atoms of H2O2 and HO2 were abstracted by RBD. The hydrogen abstraction resulted in the breakage of C-H, N-H, O-H and C=O bonds and the formation of C=C, C=N bonds. The addition reaction of OH increased the number of O-H bonds and caused the formation of C-O, N-O and O-H bonds. The dissociation of N-H bonds led to the destruction of the original structure of peptide bonds and amino acid residues, change the type of amino acid residues, and caused the conversion of N-C and N=C, C=O and C-O. The simulation partially elucidated the microscopic mechanism of the interaction between ROS in plasma and the capsid protein of SARS-CoV-2, providing theoretical support for the control of SARS-CoV-2 infection by plasma, a contribution to overcoming the global epidemic problem.


2020 ◽  
Vol 56 (61) ◽  
pp. 8683-8686 ◽  
Author(s):  
Xiaoxiao Qi ◽  
Bixia Ke ◽  
Qian Feng ◽  
Deying Yang ◽  
Qinghai Lian ◽  
...  

Herein, we report that a recombinant fusion protein, containing a 457 amino acid SARS-CoV-2 receptor binding domain and a mouse IgG1 Fc domain, could induce highly potent neutralizing antibodies and stimulate humoral and cellular immunity in mice.


2004 ◽  
Vol 70 (4) ◽  
pp. 2061-2071 ◽  
Author(s):  
Agneta Lindholm ◽  
Andreas Smeds ◽  
Airi Palva

ABSTRACT Adherence of F18 fimbrial Escherichia coli to porcine intestinal epithelial cells is mediated by the adhesin (FedF) of F18 fimbriae. In a previous study, we demonstrated the specificity of the amino acid residues between 60 and 109 as the receptor binding domain of FedF. In this study, different expression, secretion, and anchoring systems for the receptor binding domain of the FedF adhesin in Lactococcus lactis were evaluated. Two partially overlapping receptor binding domains (42 and 62 amino acid residues) were expressed as fusions with L. lactis subsp. cremoris protein PrtP for evaluation of secretion efficiency. To evaluate the cell surface display of these FedF-PrtP fusions, they were further combined with different lengths of PrtP spacers fused with either the L. lactis AcmA anchor or the PrtP cell wall binding domain. An HtrA-defective L. lactis NZ9000 mutant was constructed to determine its effect on the level of secreted or anchored fusion proteins. Recombinant L. lactis clones secreting the receptor binding domain of F18 fimbriae as a fusion with the H domains of L. lactis protein PrtP were first constructed by using two different signal peptides. FedF-PrtP fusions, directed by the signal sequence of L. brevis SlpA, were throughout found to be secreted at significantly higher quantities than corresponding fusions with the signal peptide of L. lactis Usp45. In the surface display systems tested, the L. lactis AcmA anchor performed significantly better, particularly in the L. lactis NZ9000ΔhtrA strain, compared to the L. lactis PrtP anchor region. Of the cell surface display constructs with the AcmA anchor, only those with the longest PrtP spacer regions resulted in efficient binding of recombinant L. lactis cells to porcine intestinal epithelial cells. These results confirmed that it is possible to efficiently produce the receptor binding domain of the F18 adhesin in a functionally active form in L. lactis.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Yan Guo ◽  
Wenhui He ◽  
Huihui Mou ◽  
Lizhou Zhang ◽  
Jing Chang ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines. IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


2020 ◽  
Author(s):  
Brian D. Quinlan ◽  
Wenhui He ◽  
Huihui Mou ◽  
Lizhou Zhang ◽  
Yan Guo ◽  
...  

ABSTRACTThe SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.


2003 ◽  
Vol 77 (20) ◽  
pp. 10984-10993 ◽  
Author(s):  
Hanna Dreja ◽  
Laurent Gros ◽  
Sylvie Villard ◽  
Estanislao Bachrach ◽  
Anna Oates ◽  
...  

ABSTRACT Monoclonal antibody (MAb) 667 is a neutralizing mouse monoclonal antibody recognizing the envelope glycoprotein (Env) of the ecotropic neurotropic murine retrovirus CasBrE but not that of other murine retroviruses. Since 667 can be used for preclinical studies of antiviral gene therapy as well as for studying the early events of retroviral infection, we have cloned its cDNAs and molecularly characterized it in detail. Spot technique-based experiments showed that 667 recognizes a linear epitope of 12 amino acids located in the variable region A of the receptor binding domain. Alanine scanning experiments showed that six amino acids within the epitope are critical for MAb binding. One of them, D57, is not present in any other murine retroviral Env, which suggests a critical role for this residue in the selectivity of 667. MAb 667 heavy- and light-chain cDNAs were functionally characterized by transient transfection into Cos-7 cells. Enzyme-linked immunosorbent assays and Biacore studies showed that the specificities as well as the antigen-binding thermodynamic and kinetic properties of the recombinant 667 MAb (r667) produced by Cos-7 cells and those of the parental hybridoma-produced MAb (h667) were similar. However, h667 was shown to contain contaminating retroviral and/or retrovirus-like particles which interfere with both viral binding and neutralization experiments. These contaminants could successfully be removed by a stringent purification protocol. Importantly, this purified 667 could completely prevent retrovirus binding to target cells and was as efficient as the r667 MAb produced by transfected Cos-7 cells in neutralization assays. In conclusion, this study shows that the primary mechanism of virus neutralization by MAb 667 is the blocking of the retroviral receptor binding domain of CasBrE Env. In addition, the findings of this study constitute a warning against the direct use of hybridoma cell culture supernatants for studying the initial events of retroviral cell infection as well as for carrying out in vivo neutralization experiments and suggest that either recombinant antibodies or highly purified antibodies are preferable for these purposes.


Author(s):  
Tyler N. Starr ◽  
Allison J. Greaney ◽  
Adam S. Dingens ◽  
Jesse D. Bloom

AbstractMonoclonal antibodies and antibody cocktails are a promising therapeutic and prophylaxis for COVID-19. However, ongoing evolution of SARS-CoV-2 can render monoclonal antibodies ineffective. Here we completely map all mutations to the SARS-CoV-2 spike receptor binding domain (RBD) that escape binding by a leading monoclonal antibody, LY-CoV555, and its cocktail combination with LY-CoV016. Individual mutations that escape binding by each antibody are combined in the circulating B.1.351 and P.1 SARS-CoV-2 lineages (E484K escapes LY-CoV555, K417N/T escape LY-CoV016). Additionally, the L452R mutation in the B.1.429 lineage escapes LY-CoV555. Furthermore, we identify single amino acid changes that escape the combined LY-CoV555+LY-CoV016 cocktail. We suggest that future efforts should diversify the epitopes targeted by antibodies and antibody cocktails to make them more resilient to antigenic evolution of SARS-CoV-2.


2021 ◽  
Author(s):  
Elena Erausquin ◽  
Jacinto Lopez-Sagaseta

SARS-CoV-2 initiates colonization of host cells by binding to cell membrane ACE2 receptor. This binding is mediated by the viral spike receptor binding domain (RBD). The COVID-19 pandemic has brought devastating consequences at a clinical, social and economical levels. Therefore, anticipation of potential novel SARS-causing species or SARS-CoV-2 variants with enhanced binding to ACE2 is key in the prevention of future threats to come. We have characterized a de novo single substitution, Q498Y, in SARS-CoV-2 RBD that confers stronger adherence to ACE2. While the SARS-CoV-2 beta variant, which includes three simultaneous amino acid replacements, induces a 4-fold stronger affinity, a single Q498Y substitution results in 2.5-fold tighter binding, compared to the Wuhan-Hu-1 SARS-CoV-2 2019 strain. Additionally, we crystallized RBDQ498Y complexed with ACE2 and provide here the structural basis for this enhanced affinity. These studies inform a rationale for prevention of potential SARS-causing viruses to come.


Sign in / Sign up

Export Citation Format

Share Document