The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases

2009 ◽  
Vol 55 (10) ◽  
pp. 1176-1186 ◽  
Author(s):  
M. L. Maki ◽  
J. R. Lawrence ◽  
G. D.W. Swerhone ◽  
K. T. Leung

The survival of and interactions between a Pseudomonas putida strain labelled with a red fluorescent protein gene (WT-rfp) and its green fluorescent protein gene-labelled rpoS– mutant (KO-gfp) were examined. The generation times of the planktonic WT-rfp and KO-gfp in trypticase soy broth were not significantly different (i.e., p > 0.05) from each other at 30 °C. However, the biovolume of the KO-gfp biofilm was about 7 times larger than its WT-rfp counterpart after 48 h of growth. Furthermore, the presence of WT-rfp suppressed the biofilm development of KO-gfp significantly in co-culture biofilms. In planktonic conditions, the pre-carbon-starved WT-rfp achieved a 3-fold greater survival than the pre-carbon-starved KO-gfp in 0.85% saline after a 13-day incubation. In a 1:1 ratio co-culture, the pre-carbon-starved WT-rfp outcompeted the pre-carbon-starved KO-gfp by 20-fold. However, the survival of WT-rfp and KO-gfp were not significantly different from each other in biofilm conditions. Additionally, 11.4% and 61.2% of the WT-rfp and KO-gfp biofilms, respectively, remained intact after washing in 0.2% SDS for 60 min. In conclusion, the rpoS had a significant impact on survival and competitiveness of planktonic P. putida, and on biofilm development, being implicated in competitive suppression of biofilm development in co-culture biofilms and decreased biofilm cohesiveness.


2014 ◽  
Vol 16 (6) ◽  
pp. 674-683 ◽  
Author(s):  
Chao Qiu ◽  
Bin Cheng ◽  
Yunsheng Zhang ◽  
Rong Huang ◽  
Lanjie Liao ◽  
...  






2005 ◽  
Vol 51 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Michael Moore ◽  
Jack Trevors ◽  
Hung Lee ◽  
Kam Tin Leung

The effect of carbon starvation on the stress-resistant responses of a p-nitrophenol-mineralizing Moraxella strain was examined in both buffer and river water samples. The Moraxella strain showed optimal stress-resistant responses in a minimal salt buffer when carbon-starved for 1–2 d. In the buffer system, the 1- and 2-day carbon-starved Moraxella cultures survived about 150-, 200-, and 100-fold better than the non-starved cultures when exposed to 43.5 °C, 2.7 mol/L NaCl, and 500 µmol/L H2O2for 4 h, respectively. A green fluorescent protein gene- (gfp) labelled derivative of the Moraxella strain was used to examine the stress-resistant responses of the bacterium in natural river water microcosms. The carbon-starved gfp-labelled Moraxella strain also showed stress-resistant responses against heat, osmotic, and oxidative stresses in the river water samples. Despite the stress-tolerant capability of the carbon-starved gfp-labelled Moraxella cells, they did not exhibit any survival advantage over their non-starved counterparts when inoculated into river water microcosms and incubated at 10 and 22 °C for 14 d.Key words: carbon starvation, stress-survival responses, Moraxella, p-nitrophenol, green fluorescent protein gene.





1997 ◽  
Vol 16 (5) ◽  
pp. 267-271 ◽  
Author(s):  
Lining Tian ◽  
Armand Séguin ◽  
Pierre J. Charest


2006 ◽  
Vol 13 ◽  
pp. S246
Author(s):  
Toru Kojima ◽  
Hiroyuki Kishimoto ◽  
Yuichi Watanabe ◽  
Shunsuke Kagawa ◽  
Fuminori Teraishi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document