An economic assessment of using the allowable cut effect for enhanced forest management policies: an Alberta case study

2000 ◽  
Vol 30 (10) ◽  
pp. 1591-1600 ◽  
Author(s):  
R L Hegan ◽  
M K Luckert

In Canada, forest policymakers are considering the allowable cut effect (ACE) as a potential mechanism to provide tenure holders with incentives to practice enhanced forest management. To investigate the incentives created by the ACE, this paper estimates returns to ACE investments for a trembling aspen (Populus tremuloides Michx.) - white spruce (Picea glauca (Moench) Voss) mixedwood forest in Alberta. A timber supply model is used to optimize harvesting schedules to maximize net present values over a 200-year planning horizon. A number of scenarios are investigated with variations in intensity of silvicultural investments, beginning age-class distributions, levels of flexibility around the allowable annual cut (AAC), calculations of AACs based on coniferous and mixedwood volumes, and green-up constraints. In our simulations, it was difficult to find positive returns to the ACE. Positive returns only occurred when operating under harvesting constraints with a mature starting forest and AAC calculations that ignored deciduous volumes. In those limited cases where there were positive returns to the ACE, returns were higher for extensive, rather than intensive investments. Combining these results with other potential impediments to the ACE, previously identified in the literature, the probability of tenure holders having incentives to undertake ACE investments is low.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 245
Author(s):  
Nguyen Dang Cuong ◽  
Köhl Michael ◽  
Mues Volker

Forest landscape restoration is a widely accepted approach to sustainable forest management. In addition to revitalizing degraded sites, forest landscape restoration can increase the supply of sustainable timber and thereby reduce logging in natural forests. The current study presents a spatial land use optimization model and utilizes a linear programming algorithm that integrates timber production and timber processing chains to meet timber demand trade-offs and timber supply. The objective is to maximize yield and profit from forest plantations under volatile timber demands. The model was parameterized for a case study in Thai Nguyen Province, Vietnam, where most forest plantations grow Acacia mangium (A. mangium). Data were obtained from field surveys on tree growth, as well as from questionnaires to collect social-economic information and determine the timber demand of local wood processing mills. The integration of land use and wood utilization approaches reduces the amount of land needed to maintain a sustainable timber supply and simultaneously leads to higher yields and profits from forest plantations. This forest management solution combines economic and timber yield aspects and promotes measures focused on economic sustainability and land resource efficiency.


1990 ◽  
Vol 14 (3) ◽  
pp. 124-133 ◽  
Author(s):  
Frederick W. Cubbage ◽  
Dale W. Hogg ◽  
Thomas G. Harris ◽  
Ralph J. Alig

Abstract A regional timber supply model was developed to project softwood and hardwood supplies at state and substate levels. The model runs on a microcomputer and was applied to Georgia as a case study. Data are entered in a spreadsheet template, and forecasts are made using a Pascal program. The model seems accurate, is easy to use, relies on easily obtainable forest survey data, and can provide projections for substate areas. Projections made for Georgia indicate that softwood supplies will decrease substantially in many important substrate areas given current growth and harvest levels, but hardwood supplies will increase. South. J. Appl. For. 14(3):124-133.


2009 ◽  
Vol 85 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Alison D Lennie ◽  
Simon M Landhäusser ◽  
Victor J Lieffers ◽  
Derek Sidders

Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but protect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca, traffic


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1358
Author(s):  
Jianjia Zhu ◽  
Erfu Dai ◽  
Du Zheng ◽  
Silong Wang

Plantations in Southern China are experiencing several major problems concerning even-aged forest structures and dwindling ecosystem services under traditional forest management. The objective of this study was to determine the best management regimes (BMRs) for sustainable forest management using the Moshao forest farm as a case study. We constructed a framework for BMR modeling characterized by highly scheduled timber production (STP), low fluctuations in periodically scheduled timber harvest levels (FPS), and age class structure (ACS) at the end of the planning horizon. A paired analysis was conducted between the three indicators to identify suitable management planning for long-term timber production. Our results suggest that STP, FPS, and ACS are correlated, enabling the control of these forest performance indicators by setting various harvesting intensities in a planning horizon. We found that management regimes (MRS) with cutting area percentages from 20% to 40% and a cutting period of 10 years combined with small-area clear-cutting (≤5 ha) are optimal (MR6–MR10) for the Moshao forest farm in Southern China. In particular, MR with a cutting area percentage of 35% is the best option (MR9). These findings suggest that an applicable MR is designed by identifying the optimal harvesting intensity. The current local harvesting intensity can be properly increased to balance between timber production and ecological impacts on plantations.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 662
Author(s):  
Anton Shabaev ◽  
Anton Sokolov ◽  
Alexander Urban ◽  
Dmitry Pyatin

This paper describes an approach to the optimal planning of wood harvesting and timber supply for forest companies of Russia. Software and tools successfully used in other countries (e.g., Finland, Sweden, Canada, etc.) are not as effective in Russian conditions for a number of reasons. This calls for the development of an original approach to solve this problem with respect to Russia’s specific conditions. The main factors affecting the operation of wood harvesting companies in Russia were determined. The optimization problem was formulated taking into account all important features of wood harvesting specific to the country. The mathematical model of the problem was formulated and analyzed. An important requirement is that the solution algorithm should find high-quality plans within short computation times. The original problem was reduced to a block linear programming problem of large dimension, for which an effective numerical solution method was proposed. It is based on the multiplicative simplex method with column generation within Dantzig–Wolfe decomposition and uses heuristics to determine feasible solutions based on the branch and bound method. We tested the solution approach on real production data from a forest company in southern Karelia with a planning horizon up to a year. This case study involved 198 sites and 14 machines harvesting up to 200,000 cubic meters from an available stock volume of about 300,000 cubic meters. An increase in profit by 5% to 10% was observed, measured as revenue from the sale of products, net of harvesting and transportation costs.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


Author(s):  
Antonio Sánchez Herguedas ◽  
Adolfo Crespo Márquez ◽  
Francisco Rodrigo Muñoz

Abstract This paper describes the optimization of preventive maintenance (PM) over a finite planning horizon in a semi-Markov framework. In this framework, the asset may be operating, and providing income for the asset owner, or not operating and undergoing PM, or not operating and undergoing corrective maintenance following failure. PM is triggered when the asset has been operating for τ time units. A number m of transitions specifies the finite horizon. This system is described with a set of recurrence relations, and their z-transform is used to determine the value of τ that maximizes the average accumulated reward over the horizon. We study under what conditions a solution can be found, and for those specific cases the solution τ* is calculated. Despite the complexity of the mathematical solution, the result obtained allows the analyst to provide a quick and easy-to-use tool for practical application in many real-world cases. To demonstrate this, the method has been implemented for a case study, and its accuracy and practical implementation were tested using Monte Carlo simulation and direct calculation.


Sign in / Sign up

Export Citation Format

Share Document