Growth and nutrition of three conifer species across site gradients of north coastal British Columbia

2003 ◽  
Vol 33 (2) ◽  
pp. 313-324 ◽  
Author(s):  
J M Kranabetter ◽  
A Banner ◽  
J Shaw

We compared height growth and nutrition (foliar nutrient concentrations and retranslocation rates from 1-year-old needles) of second-growth plantations on imperfectly drained, lower productivity cedar–hemlock–salal forests with those of more productive ecosystems of north coastal British Columbia. Soils ranged from deep organic profiles to well-drained mineral soils derived from igneous to metamorphic bedrock. Leader increments on imperfectly drained sites were smaller than on well-drained sites, averaging 42% less for western hemlock (Tsuga heterophylla (Raf.) Sarg.), 56% less for Sitka spruce (Picea sitchensis (Bong.) Carrière), and 32% less for western redcedar (Thuja plicata Donn ex D. Don). Strong linear correlations were found between leader increment and foliar N, P, and S concentrations for all three tree species, and baseline foliar data for productive sites were presented. The foliar N ratios with P, S, and K were consistent across sites and indicated that many key foliar nutrients increased proportionally to the availability of N. A comparison of nutrient concentrations between current and 1-year-old foliage generally showed little difference on poorer sites, which suggested that there had been no retranslocation of nutrients from young needles within trees to compensate for low soil nutrient availability. This study confirmed the inherently low productivity of cedar-hemlock-salal forests, especially on granodiorite and gneissic diorite bedrock types, and suggested the need for site treatments or long rotations for sustainable management.

1993 ◽  
Vol 8 (2) ◽  
pp. 67-70 ◽  
Author(s):  
E. E. Nelson ◽  
Rona N. Sturrock

Abstract Several species of conifers were outplanted around infected stumps in Oregon and British Columbia to measure their susceptibility to laminated root rot caused by Phellinus weirii. Grand fir (Abies grandis) experienced nearly 30% mortality caused by P. weirii. Douglas-fir (Pseudotsuga menziesii) mortality exceeded 20%. Noble fir (A. procera), Sitka spruce (Picea sitchensis), giant sequoia (Sequoiadendron giganteum), western hemlock (Tsuga heterophylla), and ponderosa pine (Pinus ponderosa) mortality averaged less than 10%. Western white pine (P. monticola) and lodgepole pine (P. contorta) mortality was less than 1%. Phellinus weirii did not cause mortality of western redcedar (Thuja plicata) or redwood (Sequoia sempervirens). Apparent susceptibility, based on mortality over 17-20 growing seasons, was similar to that recorded in past field observations. West. J. Appl. For. 8(2):67-70.


2004 ◽  
Vol 34 (4) ◽  
pp. 800-809 ◽  
Author(s):  
J M Kranabetter ◽  
K D Coates

Silviculture systems (clear-cut, partial-cut, and unharvested forest) were compared 9–10 years after harvesting to determine their effects on conifer nutrition and the availability of soil resources, especially nitrogen. These results were used to discuss the effects of silviculture systems on tree growth in relation to the more commonly described effects of light. Differences in soil properties across the silviculture treatments were most apparent in the forest floor. Depth and C/N ratio of the forest floor had decreased slightly in clearcuts, and forest-floor moisture was highest under partial-cut forest. Despite these differences in soil chemistry and soil moisture, no differences were detected in mineralizable N (anaerobic incubation) or in situ net N mineralization among treatments. Height growth and foliar mass were reduced under the low-light conditions of the partial-cut forest, but there were no differences in foliar N concentrations of hybrid white spruce (Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière), western redcedar (Thuja plicata Dougl. ex D. Don), or western hemlock (Tsuga heterophylla (Raf.) Sarg.) saplings. Mature western hemlock trees in partial-cut forest also had concentrations of foliar N equal to that of mature trees in the unharvested forest. Overall, we detected only minor effects of silviculture systems on soils after 10 years, and we conclude that light availability is likely more responsible for the current differences in tree growth.


2007 ◽  
Vol 37 (5) ◽  
pp. 931-939 ◽  
Author(s):  
Kenneth E. Byrne ◽  
Stephen J. Mitchell

Specific information about the applied forces that cause trees to fail is required to validate mechanistic models of windthrow in different forest types. Static tree-pulling tests were conducted to examine the overturning resistance of western redcedar ( Thuja plicata Donn ex D. Don) and western hemlock ( Tsuga heterophylla (Raf.) Sarg.) in a mixed species second-growth stand in coastal British Columbia. Although widely used, tree-pulling techniques are not standardized. Data from three inclinometers were used to estimate stem deflection, which was found to increase with tree slenderness. Differing methods of fitting stem curvature had a small effect on estimates of self-loading at failure. The distance of the pivot point from the centre of the stem base increased with tree diameter. Accounting for the correct self-loading at failure produced a small difference in the overall turning moment regressions but did not improve the fit of these regressions. However, this difference increased with tree size and warrants consideration in future tree-pulling tests with large or plate-rooted trees. The stem mass – overturning resistance relationship had the best fit and was not significantly different for these species in spite of their differences in wood density and stem form.


2004 ◽  
Vol 34 (8) ◽  
pp. 1730-1746 ◽  
Author(s):  
Taro Asada ◽  
Barry G Warner ◽  
Allen Banner

Sphagnum invasion 8 years after an experimental clear-cut and mounding field trial was examined in a mesic western redcedar (Thuja plicata Donn ex D. Don) – western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest on the outer north coast of British Columbia. Sphagnum invasion was prominent in wet hollows in the mounded blocks. Pioneer species, Sphagnum pacificum Flatb. and Sphagnum angustifolium (C. Jens. ex Russ.) C. Jens., were common despite being minor components in the precut forest. Sphagnum girgensohnii Russ., a species of forests, showed expanding colonies and contained some Sphagnum capillifolium (Ehrh.) Hedw. Comparisons of vertical growth and decomposition rates of Sphagnum in the experimental field site and in a nearby natural peatland suggest that peat accumulation potential in the Sphagnum colonies in the mounded blocks is similar to that in the natural peatland. These observations suggest that open peatland-type plant communities become established and paludification processes are beginning. Mounding may be an effective strategy for silvicultural management to improve tree growth in the short term but may initiate paludification and negatively impact forest productivity in the long term in hypermaritime lower productivity forests.


1984 ◽  
Vol 62 (7) ◽  
pp. 1561-1563
Author(s):  
R. T. Ogilvie ◽  
R. J. Hebda ◽  
Hans L. Roemer

The occurrence of Oxalis oregana Nutt. in British Columbia is documented for five localities on the west coast of Vancouver Island and one locality in the Queen Charlotte Islands. The Oxalis populations grow in alluvial Tsuga heterophylla – Picea sitchensis – Thuja plicata – Polystichum munitum forest communities. Rhizomatous reproduction was recorded in all populations and flowering in two of the Vancouver Island populations. Three of the populations may be less than 3000 years old because they would have been inundated by higher sea levels during the middle Holocene. Possible introduction of plants by native people from the Olympic Peninsula, WA, is discussed.


2007 ◽  
Vol 49 (1) ◽  
pp. 55-79 ◽  
Author(s):  
Richard J. Hebda

ABSTRACT British Columbia Holocene vegetation and climate is reconstructed from pollen records. A coastal Pinus contorta paleobiome developed after glacier retreat under cool and probably dry climate. Cool moist forests involving Picea, Abies, Tsuga spp., and Pinus followed until the early Holocene. Pseudotsuga menziesii arrived and spread in the south 10 000-9000 BP, and Picea sitchensis - Tsuga heterophylla forests developed in the north. T. heterophylla increased 7500-7000 BP, and Cupressaceae expanded 5000-4000 BP. Bogs began to develop and expland. Modern vegetation arose 4000-2000 BP. There were early Holocene grass and Artemisia communities at mid-elevations and pine stands at high elevations in southern interior B.C. Forests expanded downslope and lakes formed 8500-7000 BP. Modern forests arose 4500-4000 BP while lower and upper tree lines declined. In northern B.C. non-arboreal communities preceded middle Holocene Picea forests. Abies, Pinus and Picea mariana predominated at various sites after 4000 BP. At 6000 BP Tsuga heterophylla (south) and Picea sitchensis (north) dominated the coast and islands and Quercus garryana and Pseudotsuga on southeast Vancouver Island, but Thuja plicata was infrequent. Southern Interior Plateau vegetation at 6000 BP was more open than today at middle to lower elevations, whereas forests covered the Northern Interior Plateau. Picea forests occurred in northern B.C. Holocene climate phases were: 1) warm dry "xerothermic" ca. 9500-7000 BP, 2) warm moist "mesothermic" ca. 7000-4500 BP, 3) moderate and moist 4500-0 BP, with increasing moisture 8500-6000 BP and cooling (?increased moisture) 4500-3000 BP. B.Cs Hypsithermal had dry and wet stages; 6000 BP occurred in the warm and wet mesothermic stage.


1983 ◽  
Vol 61 (12) ◽  
pp. 3172-3192 ◽  
Author(s):  
Richard J. Hebda

At 13 630 ± 310 BP (WAT-721) Port Hardy is the earliest area known to have been deglaciated at the end of the Fraser Glaciation on Vancouver Island. Pollen and macrofossil analyses of two cores from a basin–blanket bog show that about 14 000 years ago Pinus contorta, Alnus, and Pteridium aquilinum formed pioneering vegetation typical of post-ice environments on the Pacific Northwest coast. Climate is interpreted to have been relatively cool and dry. Picea sitchensis – Tsuga mertensiana forest succeeded at about 11 500 BP and persisted until about 10 000 BP. Climate was cool, moist, and maritime. Warming at about 10 000 BP permitted Tsuga heterophylla gradually to replace T. mertensiana. At 8800 BP Pseudotsuga menziesii migrated into the area and together with P. sitchensis dominated the forest. Abundant Pteridium aquilinum spores suggest forests were open. During the interval 8800 to 7000 BP the climate was warmer and drier than at present because today forests with Pseudotsuga do not extend as far north as Port Hardy. During this warm time, shallow ponds dried out. By 7000 BP Pseudotsuga declined and T. heterophylla and P. sitchensis dominated forests. Climate became wetter and cooler than in the preceding period but not as cool as today. About 3000 BP Cupressaceae, presumably both Thuja plicata and Chamaecyparis nootkatensis, shared the forest canopy with T. heterophylla. Sphagnum growth and bog development occurred after 7000 BP as climate became moister. The vegetation sequence described is a "maritime" type similar to sequences on the west coast of Washington State but unlike those from the Fraser Lowland. The xerothermic interval was of short duration between 8800 and 7000 BP but was expressed clearly in this area of moist maritime climate and therefore must have been of considerable amplitude. Vegetation differences between coastal and inland southwestern British Columbia were established by 11 500 BP.


2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


Sign in / Sign up

Export Citation Format

Share Document