Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata

2005 ◽  
Vol 35 (8) ◽  
pp. 2019-2029 ◽  
Author(s):  
Li Li ◽  
Harry X Wu

A total of 1097 cross-sectional wood disks from breast height were sampled from two rotation-aged (27 and 31 years from planting) genetic trials of radiata pine (Pinus radiata D. Don) in Australia to estimate the genetic correlation between early and rotation-aged growth and wood quality traits and the efficiency of early selection. Annual growth-ring width and density, diameter at breast height (DBH), and area-weighted density (AD) from 30 open-pollinated families were measured using X-ray densitometry. Genotype × site interactions were not significant for density and growth traits. Ring density increased steadily from the pith to cambial age 14, and then density had little change in the following years. For AD, the family and individual heritability estimates were about 0.60 and 0.30 after the first 2 years. For DBH, family and individual narrow-sense heritability estimates increased steadily after the first 4 years, and family heritability increased to 0.7 at a cambial age of 11 and had little change thereafter. Individual heritability estimate increased to 0.4 at cambial age 14 and was similar for the later ages. Beyond a cambial age of 5 years, there were strong negative genetic correlations of around –0.80 between AD and DBH. Age–age genetic correlations for AD were high and reached 0.80 and above after cambial age 3. Age–age genetic correlations for DBH were similar to AD, except the first two years. The most efficient early selection year was between ages 4 and 6 years after planting for AD, and between ages 8 and 11 years for DBH.


2013 ◽  
Vol 62 (1-6) ◽  
pp. 277-284 ◽  
Author(s):  
Huixiao Yang ◽  
Tianyi Liu ◽  
Chunxin Liu ◽  
Jinbang Wang ◽  
Kaer Chen ◽  
...  

Abstract Genetic parameters for height (H), diameter at breast height (DBH), stem straightness (STR), and under crown clear bole height (CH) of loblolly pine (Pinus taeda L.) were estimated for 255 families (209 open pollinated (OP) and 46 controlled pollinated (CP) families) using a family model and an individual tree model at age 1, 2, 3, 5, 11, and 15 years. Heritability estimates for growth traits of individual trees at age 11 years were the highest (0.17-0.78), and those at age 15 years were the lowest (0.05-0.74). Heritability estimates for DBH, STR, and CH were lower than those for H. Genetic correlations between H and DBH were generally strongly positive, attained a maximum values at age 2 to 3, and declined slightly thereafter. The genetic correlations between CH at age 11 and both H and DBH at different ages were moderate. Age-age genetic correlations for growth traits were moderate to high (0.56-0.91) at age 5 for half-rotation age (15 years), indicating the opportunity exists for early selection. Indirect selection from the age 5 to 11 years for H and DBH could be expected to produce gains of over 50% and 35% respectively, for these two ages, relative to direct selection at age 15. Efficiencies of early selection for H and DBH indicated that growth at maturity could be improved by early selection.



1986 ◽  
Vol 16 (5) ◽  
pp. 1041-1049 ◽  
Author(s):  
K. C. Yang ◽  
C. A. Benson ◽  
J. K. Wong

The distribution and vertical variation of juvenile wood was studied in an 81-year-old dominant tree and an 83-year-old suppressed tree of Larixlaricina (Du Roi) K. Koch. Two criteria, growth ring width and tracheid length, were used to demarcate the boundary of juvenile wood. The width of juvenile wood, expressed in centimetres and the number of growth rings, decreased noticeably from the base to the top of the tree. The volume of juvenile wood decreased in a similar pattern. These decreasing trends had a strong negative correlation with the year of formation of cambial initials at a given tree level. The length of these cambial initials decreased with increasing age of formation of the cambial initials. In the juvenile wood zone, there was a positive linear regression between the growth ring number (age) and the tracheid length. The slopes of these regression lines at various tree levels increased as the age of the year of formation of the cambial initials increased. At a given tree level, the length of tracheids increased from the pith to a more uniform length near the bark. However, the number of years needed to attain a more uniform tracheid length decreased from the base to the top of the tree. These relationships suggest that the formation of juvenile wood is related to the year of formation of the cambial initials. Consequently, the juvenile wood is conical in shape, tapering towards the tree top.



2021 ◽  
Author(s):  
Marisol Londoño-Gil ◽  
Juan Carlos Rincón Flórez ◽  
Albeiro López-Herrera ◽  
Luis Gabriel Gonzalez-Herrera

Abstract The Blanco Orejinegro (BON) is a Colombian creole cattle breed that is not genetically well characterized for growth traits. The aim of this work was to estimate genetic parameters for birth weight (BW), weaning weight (WW), yearling weight (YW), daily weight gain between birth and weaning (DWG), time to reach 120 kg of live weight (T120), and time to reach 60% of adult weight (T60%), and establish the selection criteria for growth traits in the BON population of Colombia. Genealogical and phenotypic information for BW, WW, YW, DWG, T120, and T60% traits of BON animals from 14 Colombian herds were used. These traits were analyzed with the AIREML method in a uni- and bi-trait animal model including the maternal effect for BW, WW, DWG, and T120. The direct heritability estimates values were 0.22 ± 0.059 (BW), 0.20 ± 0.057 (WW), 0.20 ± 0.153 (YW), 0.17 ± 0.07 (DWG), 0.26 (T120), and 0.44 ± 0.03 (T60%). The maternal heritability estimates values were 0.14 ± 0.040 (BW), 0.15 ± 0.039 (WW), 0.25 ± 0.06 (DWG), and 0.16 (T120). The direct genetic correlations were high (>|0.60|) among all the traits, except between T60% with BW, WW, YW, and DWG (ranged from -0.02 to -0.51), all in a favorable direction. The results showed that there is genetic variation in the growth traits associated with the additive genetic effect and they might respond to selection processes. Furthermore, genetic gains would improve through selection, especially for YW and T60% when WW is used as criterion.



IAWA Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Jie Wang ◽  
Shan Li ◽  
Juan Guo ◽  
Haiqing Ren ◽  
Yurong Wang ◽  
...  

Abstract Oaks are important tree species, providing essential biomaterial for the wood industry. We characterize and compare wood anatomical traits of plantation grown Quercus acutissima Carruth. and Q. variabilis Blume to provide more detailed information to understand xylem radial growth, structure, and function, as well as differences between sapwood and heartwood, to provide data relevant for tree breeding and value-added wood utilization of oak plantations in China. In this study, radial strips were collected at breast height from the main trunk of the two species. Latewood percentage and growth ring width were investigated by X-ray densitometry and a Tree Ring Analysis System, respectively. Vessel and fibre lumen diameter, vessel and fibre wall thickness, vessel density, fibre wall thickness/diameter ratio, tissue proportions, and pit membrane thickness in between vasicentric tracheids were observed with light microscopy and electron microscopy and quantified. There were significant differences in a few wood anatomical traits between the two species: vessel wall thickness and vessel lumen diameter were higher in Q. acutissima than in Q. variabilis, while higher axial parenchyma proportion in sapwood was found in Q. variabilis than in Q. acutissima. More abundant tyloses were found in heartwood than in sapwood of both species. Our work showed the intraspecific and interspecific variation of the two species. Most differences between sapwood and heartwood must be attributed to differences in cambial age during their formation.



2009 ◽  
Vol 66 (6) ◽  
pp. 606-606 ◽  
Author(s):  
Washington J. Gapare ◽  
Brian S. Baltunis ◽  
Miloš Ivković ◽  
Harry X. Wu


2002 ◽  
Vol 32 (3) ◽  
pp. 498-508 ◽  
Author(s):  
Seija Anttonen ◽  
Riikka Piispanen ◽  
Jari Ovaska ◽  
Pia Mutikainen ◽  
Pekka Saranpää ◽  
...  

Three-year old Betula pendula Roth clones were grown at two nutrient levels in a field experiment to investigate the responses and recovery in growth and wood properties to a range of defoliation levels (0–100%). No general threshold value of defoliation level for negative effects in growth was found, since the sensitivity of saplings to defoliation varied according to plant traits studied. However, responses were related to defoliation intensity. Saplings compensated for 25% defoliation in terms of height growth and number of current branches and were able to tolerate 50% defoliation without effects on diameter growth 1 year after the defoliation. Nutrient availability was significant only in determining how total biomass responded to defoliation. Fertilized saplings were able to tolerate 25% defoliation without reduction in total biomass, but nonfertilized saplings were not. The interaction between defoliation and fertilization disappeared in the second growing season after the defoliation. Saplings were not able to compensate for 75% defoliation in terms of total biomass or for 100% defoliation in terms of growth and branching even in 2 years' recovery time. In stemwood, complete defoliation reduced growth ring width and vessel diameter simultaneously and also induced a narrow zone of secondary xylem with defects. Our results suggest that defoliation level and recovery time played a crucial role in compensatory growth of birch saplings, while nutrient availability had a minor role.



IAWA Journal ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 276-287 ◽  
Author(s):  
Marcos González-Cásares ◽  
Marín Pompa-García ◽  
Alejandro Venegas-González

ABSTRACTOngoing climate change is expected to alter forests by affecting forest productivity, with implications for the ecological functions of these systems. Despite its great dendrochronological potential, little research has been conducted into the use of wood density as a proxy for determining sensitivity to climate variability in Mexico. The response of Abies durangensis Martínez, in terms of wood density and growth ring width, to monthly climatic values (mean temperature, accumulated precipitation and the drought index SPEI) was analyzed through correlation analysis. Abies durangensis presents a high response, in terms of radial growth, to climatic conditions. Tree-ring widths are more sensitive to hydroclimatic variables, whereas wood density values are more sensitive to temperature. In particular, mean (MeanD) and minimum (MND) wood density values are more sensitive to climate than maximum (MXD). We found very marked spatial variations that indicate that A. durangensis responds differently to drought conditions depending on the indices of density.



2005 ◽  
Vol 29 (4) ◽  
pp. 200-204 ◽  
Author(s):  
David P. Gwaze ◽  
Ross Melick ◽  
Charly Studyvin ◽  
Mark Coggeshall

Abstract Genetic parameters for height (HT), diameter (diameter at breast height [dbh]), and volume for a shortleaf pine (Pinus echinata Mill.) population in Missouri were estimated from a single progeny test comprising 44 half-sibling families assessed at 3, 5, 7, 10, and 17 years. Individual tree heritability estimates for growth traits at age 10 years and younger were high (0.30–0.43), and those at age 17 years were low (0.11–0.24). Heritability estimates for dbh were lower than those for HT. Family mean heritability estimates were moderate to high (0.32–0.66). Genetic correlations were higher than their phenotypic counterparts for all growth traits. Age-age genetic correlations for growth traits were moderate to high (0.68–0.98), indicating opportunity for early selection. Genetic correlations between different growth traits were high (0.81–1.00). Indirect selection on age 5- or 7-year HTs may be expected to produce over 25% more volume at 17 years compared with direct selection for volume at age 17 years. Efficiencies of selection suggest that early HT is a better selection criterion for volume at older ages than dbh because of the high heritability at young ages and strong juvenile-mature genetic correlations. Genetic gain in an unrogued seed orchard was predicted to be 6.7 and 27.2% for 10- and 17-year volume, respectively. These results suggest that growth traits in shortleaf pine in Missouri have high genetic variation, and genetic improvement was effective. South. J. Appl. For. 29(4):200–204.



Holzforschung ◽  
2005 ◽  
Vol 59 (6) ◽  
pp. 654-661 ◽  
Author(s):  
Shusheng Pang ◽  
Alfred Herritsch

Abstract Anisotropic shrinkage (tangential and longitudinal), equilibrium moisture content (EMC) and fibre saturation point (FSP) were measured for separated earlywood (EW) and latewood (LW) of a 0.75-m-long log of 20-year old Pinus radiata that was cut at breast height from a selected tree in the forest of Central North Island, New Zealand. The experimental results have shown that at 12% moisture content (MC), tangential shrinkage was 3.23% for EW and 3.90% for LW, with an overall average of 3.56%. Longitudinal shrinkage was 0.23% for EW and 0.21% for LW with an overall average of 0.22%. Shrinkage for the oven dry (OD) state showed similar trends to those at 12% MC in terms of the differences between EW and LW. The tangential and longitudinal shrinkage varied significantly along the radius from pith to bark. The EW tangential shrinkage increased from pith to the seventh growth ring and then remained relatively constant until the last ring adjacent to the bark. The LW tangential shrinkage also increased from the pith outwards until the seventh growth ring, but beyond that was more variable than the EW shrinkage. Both EW and LW showed similar longitudinal shrinkage, with the highest values in the second growth ring, from which the shrinkage decreased exponentially towards the bark. LW had a slightly higher EMC than EW at a relative humidity (RH) below 80%, but the trend was reversed for RH above 80%. The EMC differences between EW and LW were less than 0.6%. The overall average FSP for Pinus radiata was 29.1%, with actual values varying from 25% to 32.8%. The earlywood FSP (28.9%) was slightly lower than that of the latewood (29.4%).



2002 ◽  
Vol 32 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Barbara L Gartner ◽  
Eric M North ◽  
G R Johnson ◽  
Ryan Singleton

It would be valuable economically to know what are the biological triggers for formation of mature wood (currently of high value) and (or) what maintains production of juvenile wood (currently of low value), to develop silvicultural regimes that control the relative production of the two types of wood. Foresters commonly assume the bole of softwoods produces juvenile wood within the crown and mature wood below. We tested that assumption by comparing growth ring areas and widths and wood density components of the outer three growth rings in disks sampled from different vertical positions of 34-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. The 18 trees were sampled from one site and had a wide range of heights to live crown. Most of the variance (63–93%) in wood characteristics (growth ring area: total, earlywood, latewood; growth ring width: total, earlywood, latewood; latewood proportion: by area, width; and ring density: total, earlywood, latewood) was due to within-tree differences (related to age of the disk). Stepwise regression analysis gave us equations to estimate wood characteristics, after which we analyzed the residuals with a linear model that included whether a disk was within or below the crown (defined as the lowest node on the stem with less than three live branches). After adjusting for tree and disk position, only 2–10% of the residual variation was associated with whether the disk was in or out of the live crown. There were no statistically significant differences at p = 0.05 between a given disk (by node number) in versus out of the crown for any of the factors studied. Moreover, the wood density characteristics were not statistically significant at p = 0.30. This research suggests that there was no effect of the crown position on the transition from juvenile to mature wood as judged by wood density. Therefore, we found no evidence to support the concept that tree spacing and live-branch pruning have a significant effect on the cambial age of transition from juvenile to mature wood in Douglas-fir trees of this age.



Sign in / Sign up

Export Citation Format

Share Document