Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar

2006 ◽  
Vol 36 (5) ◽  
pp. 1129-1138 ◽  
Author(s):  
Jennifer L. Rooker Jensen ◽  
Karen S Humes ◽  
Tamara Conner ◽  
Christopher J Williams ◽  
John DeGroot

Although lidar data are widely available from commercial contractors, operational use in North America is still limited by both cost and the uncertainty of large-scale application and associated model accuracy issues. We analyzed whether small-footprint lidar data obtained from five noncontiguous geographic areas with varying species and structural composition, silvicultural practices, and topography could be used in a single regression model to produce accurate estimates of commonly obtained forest inventory attributes on the Nez Perce Reservation in northern Idaho, USA. Lidar-derived height metrics were used as predictor variables in a best-subset multiple linear regression procedure to determine whether a suite of stand inventory variables could be accurately estimated. Empirical relationships between lidar-derived height metrics and field-measured dependent variables were developed with training data and acceptable models validated with an independent subset. Models were then fit with all data, resulting in coefficients of determination and root mean square errors (respectively) for seven biophysical characteristics, including maximum canopy height (0.91, 3.03 m), mean canopy height (0.79, 2.64 m), quadratic mean DBH (0.61, 6.31 cm), total basal area (0.91, 2.99 m2/ha), ellipsoidal crown closure (0.80, 0.08%), total wood volume (0.93, 24.65 m3/ha), and large saw-wood volume (0.75, 28.76 m3/ha). Although these regression models cannot be generalized to other sites without additional testing, the results obtained in this study suggest that for these types of mixed-conifer forests, some biophysical characteristics can be adequately estimated using a single regression model over stands with highly variable structural characteristics and topography.

Author(s):  
Ibrahim Fayad ◽  
Nicolas Baghdadi ◽  
Clayton Alcarde Alvares ◽  
Jose Luiz Stape ◽  
Jean Stephane Bailly ◽  
...  

2015 ◽  
Vol 45 (11) ◽  
pp. 1514-1523 ◽  
Author(s):  
S. Magnussen ◽  
E. Næsset ◽  
T. Gobakken

A single a priori chosen linear regression model with two alternative error structures is proposed for model-assisted (MA) and model-dependent (MD) estimation of state and change in aboveground tree biomass (AGB, Mg·ha−1) in three forest strata in the Våler forest in southeastern Norway. Field data of tree height and stem diameter were collected in 145 permanent 200 m2circular plots. Concurrent LiDAR data were collected for the entire forest. The regression model includes two LiDAR-based explanatory variables: the mean of canopy height raised to a power of 1.5 and the standard deviation of canopy heights. A nearest-neighbour thinning of the 2010 LiDAR data to the density of the 1999 data was implemented to counter density effects in the explanatory variables. Estimates of change based on a single regression model were more accurate than estimating change from year-specific models (and no data thinning). A canopy height dependent correlated error structure was preferred over a partitioning of the error to temporary and “permanent” plot effects. For point estimates of AGB in 1999 and 2010, MA and MD estimates of errors were numerically comparable, but MD errors of change were much smaller than corresponding MA errors.


2021 ◽  
Vol 13 (9) ◽  
pp. 1722
Author(s):  
Nian-Wei Ku ◽  
Sorin Popescu ◽  
Marian Eriksson

A large-scale global canopy height map (GCHM) is essential for global forest aboveground biomass estimation. Four GCHMs have recently been built using data from the Geoscience Laser Altimeter System (GLAS) sensor aboard the Ice, Cloud, and land Elevation Satellite (ICESat), along with auxiliary spatial and climate information. The main objectives of this research were to find out how well a selected GCHM agrees with airborne lidar data from locations in the southern United States and to recalibrate that GCHM to more closely match the forest canopy heights found in the region. The airborne lidar resource was built from data collected between 2010 and 2012, available from in-house and publicly available sources, for sites that included a variety of vegetation types across the southern United States. EPA ecoregions were used to provide ecosystem information for the southern United States. The airborne lidar data were pre-processed to provide lidar-derived metrics, and assigned to four height categories—namely, returns from above 0 m, 1 m, 3 m, and 5 m. The assessment phase results indicated that the 90th and 95th percentiles of the airborne lidar height values were well-suited for use in the recalibration phase of the study. Simple linear regression was used to generate a new, recalibrated GCHM. It was concluded that the characterization of the agreement of a selected GCHM with local data, followed by the recalibration of the existing GCHM to the local region, is both viable and essential for future GCHMs in studies conducted at large scales.


2021 ◽  
Vol 11 (7) ◽  
pp. 3094
Author(s):  
Vitor Fortes Rey ◽  
Kamalveer Kaur Garewal ◽  
Paul Lukowicz

Human activity recognition (HAR) using wearable sensors has benefited much less from recent advances in Deep Learning than fields such as computer vision and natural language processing. This is, to a large extent, due to the lack of large scale (as compared to computer vision) repositories of labeled training data for sensor-based HAR tasks. Thus, for example, ImageNet has images for around 100,000 categories (based on WordNet) with on average 1000 images per category (therefore up to 100,000,000 samples). The Kinetics-700 video activity data set has 650,000 video clips covering 700 different human activities (in total over 1800 h). By contrast, the total length of all sensor-based HAR data sets in the popular UCI machine learning repository is less than 63 h, with around 38 of those consisting of simple mode of locomotion activities like walking, standing or cycling. In our research we aim to facilitate the use of online videos, which exist in ample quantities for most activities and are much easier to label than sensor data, to simulate labeled wearable motion sensor data. In previous work we already demonstrated some preliminary results in this direction, focusing on very simple, activity specific simulation models and a single sensor modality (acceleration norm). In this paper, we show how we can train a regression model on generic motions for both accelerometer and gyro signals and then apply it to videos of the target activities to generate synthetic Inertial Measurement Units (IMU) data (acceleration and gyro norms) that can be used to train and/or improve HAR models. We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data. Furthermore, we show that by either including a small amount of real sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate much more simulated data from video than we can collect its real version, the advantage of the latter can eventually be equalized.


2015 ◽  
Vol 104 ◽  
pp. 144-157 ◽  
Author(s):  
Karolina D. Fieber ◽  
Ian J. Davenport ◽  
Mihai A. Tanase ◽  
James M. Ferryman ◽  
Robert J. Gurney ◽  
...  

2020 ◽  
Author(s):  
Ninni Saarinen ◽  
Mikko Vastaranta ◽  
Eija Honkavaara ◽  
Michael A. Wulder ◽  
Joanne C. White ◽  
...  

Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts especially when wind damage events have increased in recent years.The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage and to provide information that could be used to support decision making in forest management planning, as well as in other sectors (e.g. electricity companies). To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. LiDAR data can provide wall-to-wall coverage and are best suited for monitoring of the dominant trees. In addition multitemporal LiDAR is highly capable of monitoring abiotic tree or stand level changes. The LiDAR data used are openly accessible for public from NLS and are mainly used for generating digital terrain model (DTM). Potential drivers associated with the probability of wind-induced forest damage were examined using a multivariate logistic regression model which was well suited to the discrete nature of the dependent variable (i.e., damage, no damage) and it has been used widely in the modelling of forest disturbances. Risk model predictors related to topography and vegetation height were extracted from the LiDAR-derived surface models such as DTM and canopy height model (CHM). The strongest predictors in the risk model were mean canopy height and mean elevation. Damaged sample grid cells covered 45,6% of the entire sample and they were mainly dominated by Norway spruce. CHM mean and maximum were higher in damaged sample cells which can be expected to correlate with the result where mean volume was also larger in damaged sample cells than in undamaged. Regression model output was a continuous probability surface whereby the probability for wind damage is interpreted as risk (e.g. areas with high probability of wind damage can be described as high risk areas). With increasing frequency of wind damage events, there is a need to identify areas of high wind damage risk. The selected predictor variables, mean elevation describing local topography and mean canopy height, can provide valuable information on the damage probability (i.e. risk) in a robust way.


2020 ◽  
Vol 27 ◽  
Author(s):  
Zaheer Ullah Khan ◽  
Dechang Pi

Background: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. Objective: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. Methods: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via n-segmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2DConvolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. Results: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. Conclusion : In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-27
Author(s):  
Yan Liu ◽  
Bin Guo ◽  
Daqing Zhang ◽  
Djamal Zeghlache ◽  
Jingmin Chen ◽  
...  

Store site recommendation aims to predict the value of the store at candidate locations and then recommend the optimal location to the company for placing a new brick-and-mortar store. Most existing studies focus on learning machine learning or deep learning models based on large-scale training data of existing chain stores in the same city. However, the expansion of chain enterprises in new cities suffers from data scarcity issues, and these models do not work in the new city where no chain store has been placed (i.e., cold-start problem). In this article, we propose a unified approach for cold-start store site recommendation, Weighted Adversarial Network with Transferability weighting scheme (WANT), to transfer knowledge learned from a data-rich source city to a target city with no labeled data. In particular, to promote positive transfer, we develop a discriminator to diminish distribution discrepancy between source city and target city with different data distributions, which plays the minimax game with the feature extractor to learn transferable representations across cities by adversarial learning. In addition, to further reduce the risk of negative transfer, we design a transferability weighting scheme to quantify the transferability of examples in source city and reweight the contribution of relevant source examples to transfer useful knowledge. We validate WANT using a real-world dataset, and experimental results demonstrate the effectiveness of our proposed model over several state-of-the-art baseline models.


Sign in / Sign up

Export Citation Format

Share Document