Knowledge Transfer with Weighted Adversarial Network for Cold-Start Store Site Recommendation

2021 ◽  
Vol 15 (3) ◽  
pp. 1-27
Author(s):  
Yan Liu ◽  
Bin Guo ◽  
Daqing Zhang ◽  
Djamal Zeghlache ◽  
Jingmin Chen ◽  
...  

Store site recommendation aims to predict the value of the store at candidate locations and then recommend the optimal location to the company for placing a new brick-and-mortar store. Most existing studies focus on learning machine learning or deep learning models based on large-scale training data of existing chain stores in the same city. However, the expansion of chain enterprises in new cities suffers from data scarcity issues, and these models do not work in the new city where no chain store has been placed (i.e., cold-start problem). In this article, we propose a unified approach for cold-start store site recommendation, Weighted Adversarial Network with Transferability weighting scheme (WANT), to transfer knowledge learned from a data-rich source city to a target city with no labeled data. In particular, to promote positive transfer, we develop a discriminator to diminish distribution discrepancy between source city and target city with different data distributions, which plays the minimax game with the feature extractor to learn transferable representations across cities by adversarial learning. In addition, to further reduce the risk of negative transfer, we design a transferability weighting scheme to quantify the transferability of examples in source city and reweight the contribution of relevant source examples to transfer useful knowledge. We validate WANT using a real-world dataset, and experimental results demonstrate the effectiveness of our proposed model over several state-of-the-art baseline models.

2019 ◽  
Vol 9 (8) ◽  
pp. 1550 ◽  
Author(s):  
Aihong Shen ◽  
Huasheng Wang ◽  
Junjie Wang ◽  
Hongchen Tan ◽  
Xiuping Liu ◽  
...  

Person re-identification (re-ID) is a fundamental problem in the field of computer vision. The performance of deep learning-based person re-ID models suffers from a lack of training data. In this work, we introduce a novel image-specific data augmentation method on the feature map level to enforce feature diversity in the network. Furthermore, an attention assignment mechanism is proposed to enforce that the person re-ID classifier focuses on nearly all important regions of the input person image. To achieve this, a three-stage framework is proposed. First, a baseline classification network is trained for person re-ID. Second, an attention assignment network is proposed based on the baseline network, in which the attention module learns to suppress the response of the current detected regions and re-assign attentions to other important locations. By this means, multiple important regions for classification are highlighted by the attention map. Finally, the attention map is integrated in the attention-aware adversarial network (AAA-Net), which generates high-performance classification results with an adversarial training strategy. We evaluate the proposed method on two large-scale benchmark datasets, including Market1501 and DukeMTMC-reID. Experimental results show that our algorithm performs favorably against the state-of-the-art methods.


2018 ◽  
Author(s):  
Gongbo Liang ◽  
Sajjad Fouladvand ◽  
Jie Zhang ◽  
Michael A. Brooks ◽  
Nathan Jacobs ◽  
...  

AbstractComputed tomography (CT) is a widely-used diag-reproducibility regarding radiomic features, such as intensity, nostic image modality routinely used for assessing anatomical tissue characteristics. However, non-standardized imaging pro-tocols are commonplace, which poses a fundamental challenge in large-scale cross-center CT image analysis. One approach to address the problem is to standardize CT images using generative adversarial network models (GAN). GAN learns the data distribution of training images and generate synthesized images under the same distribution. However, existing GAN models are not directly applicable to this task mainly due to the lack of constraints on the mode of data to generate. Furthermore, they treat every image equally, but in real applications, some images are more difficult to standardize than the others. All these may lead to the lack-of-detail problem in CT image synthesis. We present a new GAN model called GANai to mitigate the differences in radiomic features across CT images captured using non-standard imaging protocols. Given source images, GANai composes new images by specifying a high-level goal that the image features of the synthesized images should be similar to those of the standard images. GANai introduces an alternative improvement training strategy to alternatively and steadily improve model performance. The new training strategy enables a series of technical improvements, including phase-specific loss functions, phase-specific training data, and the adoption of ensemble learning, leading to better model performance. The experimental results show that GANai is significantly better than the existing state-of-the-art image synthesis algorithms on CT image standardization. Also, it significantly improves the efficiency and stability of GAN model training.


Author(s):  
Xin Huang ◽  
Yuxin Peng ◽  
Mingkuan Yuan

DNN-based cross-modal retrieval is a research hotspot to retrieve across different modalities as image and text, but existing methods often face the challenge of insufficient cross-modal training data. In single-modal scenario, similar problem is usually relieved by transferring knowledge from large-scale auxiliary datasets (as ImageNet). Knowledge from such single-modal datasets is also very useful for cross-modal retrieval, which can provide rich general semantic information that can be shared across different modalities. However, it is challenging to transfer useful knowledge from single-modal (as image) source domain to cross-modal (as image/text) target domain. Knowledge in source domain cannot be directly transferred to both two different modalities in target domain, and the inherent cross-modal correlation contained in target domain provides key hints for cross-modal retrieval which should be preserved during transfer process. This paper proposes Cross-modal Hybrid Transfer Network (CHTN) with two subnetworks: Modal-sharing transfer subnetwork utilizes the modality in both source and target domains as a bridge, for transferring knowledge to both two modalities simultaneously; Layer-sharing correlation subnetwork preserves the inherent cross-modal semantic correlation to further adapt to cross-modal retrieval task. Cross-modal data can be converted to common representation by CHTN for retrieval, and comprehensive experiment on 3 datasets shows its effectiveness.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6139 ◽  
Author(s):  
Hongchao Cheng ◽  
Yiqi Liu ◽  
Daoping Huang ◽  
Chong Xu ◽  
Jing Wu

Process monitoring plays an important role in ensuring the safety and stable operation of equipment in a large-scale process. This paper proposes a novel data-driven process monitoring framework, termed the ensemble adaptive sparse Bayesian transfer learning machine (EAdspB-TLM), for nonlinear fault diagnosis. The proposed framework has the following advantages: Firstly, the probabilistic relevance vector machine (PrRVM) under Bayesian framework is re-derived so that it can be used to forecast the plant operating conditions. Secondly, we extend the PrRVM method and assimilate transfer learning into the sparse Bayesian learning framework to provide it with the transferring ability. Thirdly, the source domain (SD) data are re-enabled to alleviate the issue of insufficient training data. Finally, the proposed EAdspB-TLM framework was effectively applied to monitor a real wastewater treatment process (WWTP) and a Tennessee Eastman chemical process (TECP). The results further demonstrate that the proposed method is feasible.


AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 376-388
Author(s):  
Joel R. Bock ◽  
Akhilesh Maewal

Product recommendation can be considered as a problem in data fusion—estimation of the joint distribution between individuals, their behaviors, and goods or services of interest. This work proposes a conditional, coupled generative adversarial network (RecommenderGAN) that learns to produce samples from a joint distribution between (view, buy) behaviors found in extremely sparse implicit feedback training data. User interaction is represented by two matrices having binary-valued elements. In each matrix, nonzero values indicate whether a user viewed or bought a specific item in a given product category, respectively. By encoding actions in this manner, the model is able to represent entire, large scale product catalogs. Conversion rate statistics computed on trained GAN output samples ranged from 1.323% to 1.763%. These statistics are found to be significant in comparison to null hypothesis testing results. The results are shown comparable to published conversion rates aggregated across many industries and product types. Our results are preliminary, however they suggest that the recommendations produced by the model may provide utility for consumers and digital retailers.


2020 ◽  
Vol 27 ◽  
Author(s):  
Zaheer Ullah Khan ◽  
Dechang Pi

Background: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. Objective: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. Methods: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via n-segmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2DConvolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. Results: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. Conclusion : In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Dongheun Han ◽  
Chulwoo Lee ◽  
Hyeongyeop Kang

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).


Sign in / Sign up

Export Citation Format

Share Document