Composition, structure, and aboveground biomass of two old-growth northern hardwood stands in Upper Michigan

1985 ◽  
Vol 15 (1) ◽  
pp. 78-82 ◽  
Author(s):  
G. D. Mroz ◽  
M. R. Gale ◽  
M. F. Jurgensen ◽  
D. J. Frederick ◽  
A. Clark III

Two climax northern hardwood stands in Upper Michigan growing on sites of differing quality were characterized on the basis of stand composition and aboveground biomass as estimated by regression techniques. Both stands were dominated by sugar maple (Acersaccharum Marsh.). Total aboveground biomass was estimated at 284 and 325 t•ha−1 on the sites. These values are much lower than previous estimates for climax stands in this region because of the lack of shade tolerant conifers on the sites. Site differences are likely due to elevational differences and differences in soil rooting volume.

1996 ◽  
Vol 26 (10) ◽  
pp. 1875-1892 ◽  
Author(s):  
Sally E. Dahir ◽  
Craig G. Lorimer

Trends in gap dynamics among pole, mature, and old-growth northern hardwood stands were investigated on eight sites in the Porcupine Mountains of western upper Michigan. Recent gaps (created between 1981 and 1992) were identified using permanent plot records of tree mortality, while older gaps (1940–1981) were identified using stand reconstruction techniques. Although canopy gaps were somewhat more numerous in pole and mature stands, gaps were <25% as large as those in old-growth stands because of smaller gap-maker size, and the proportion of stand area turned over in gaps was only about half as large. Gap makers in younger stands generally had mean relative diameters (ratio of gap-maker DBH to mean DBH of canopy trees) <1.0 and were disproportionately from minor species such as eastern hophornbeam (Ostryavirginiana (Mill.) K. Koch). Gap makers in old-growth stands had mean relative diameters >1.5 and were predominantly from the dominant canopy species. Even in old-growth forests, most gaps were small (mean 44 m2) and created by single trees. Based on the identity of the tallest gap tree in each gap, nearly all shade-tolerant and midtolerant species have been successful in capturing gaps, but gap capture rates for some species were significantly different from their relative density in the upper canopy. The tallest gap trees of shade-tolerant species were often formerly overtopped trees, averaging more than 60% of the mean canopy height and having mean ages of 65–149 years. Canopy turnover times, based on gap formation rates over a 50-year period, were estimated to average 128 years for old-growth stands dominated by sugar maple (Acersaccharum Marsh.) and 192 years for old-growth stands dominated by hemlock (Tsugacanadensis (L.) Carrière). While these estimates of turnover time are substantially shorter than maximum tree ages observed on these sites, they agree closely with independent data on mean canopy residence time for trees that die at the average gap-maker size of 51 cm DBH. The data support previous hypothetical explanations of the apparent discrepancy between canopy turnover times of <130 years for hardwood species and the frequent occurrence of trees exceeding 250 years of age.


2000 ◽  
Vol 30 (9) ◽  
pp. 1453-1462 ◽  
Author(s):  
Gregory G McGee

The objective of this study was to adjust previously published estimates of coarse woody debris (CWD) volume and basal areas in northern hardwood forests to account for elevated CWD inputs due to beech bark disease (a disease complex of the scale insect, Cryptococcus fagisuga Lindinger, and a fungus, Nectria spp., on American beech, Fagus grandifolia Ehrh.). Ratios of snags/live tree densities and downed CWD volume/live tree basal area were compared between beech and the codominant, shade-tolerant sugar maple (Acer saccharum Marsh.). The differences between the beech and the sugar maple ratios were used to define the elevated mortality from beech bark disease. Estimated volumes of downed CWD (stumps [Formula: see text] 1.0 m tall and logs), adjusted for effects of beech bark disease, were 108 ± 18 and 48 ± 11 m3·ha-1in old-growth and even-aged, 90- to 100-year-old maturing stands, respectively, representing reductions of 22 and 21%, respectively, compared with observed volumes. Similarly, snag densities were adjusted from 59.7 ± 21.7 to 41.1 ± 26.3 per hectare in the old-growth stands and from 96.3 ± 48.0 to 87.3 ± 46.5 per hectare in the maturing stands. Snag basal areas were reduced 21 and 17% from their observed values to 6.8 ± 3.5 and 3.5 ± 0.6 m2·ha-1in the old-growth and maturing stands, respectively. The adjusted CWD estimates presented here are more historically accurate and ecologically meaningful than previous observations made in diseased northern hardwood forests and, therefore, provide more appropriate target levels for managing CWD in these forest types.


2011 ◽  
Vol 41 (4) ◽  
pp. 881-891 ◽  
Author(s):  
Farrah R. Fatemi ◽  
Ruth D. Yanai ◽  
Steven P. Hamburg ◽  
Matthew A. Vadeboncoeur ◽  
Mary A. Arthur ◽  
...  

Estimates of aboveground biomass and nutrient stocks are commonly derived using equations that describe tree dimensional relationships. Despite the widespread use of this approach, there is little information about whether equations specific to stand age are necessary for accurate biomass predictions. We developed equations for small trees (2–12 cm diameter) of six species in four young northern hardwood stands. We then compared our equations with equations used frequently in the literature that were developed in mature stands (Whittaker et al. 1974. Ecol. Monogr. 44: 233–252). Our equations for yellow birch ( Betula alleghaniensis Britt.) predicted 11%–120% greater stem wood for individual trees compared with the equations from Whittaker et al. and, on average, 50% greater aboveground yellow birch biomass in the four stands that we studied. Differences were less pronounced for sugar maple ( Acer saccharum Marsh.) and American beech ( Fagus grandifolia Ehrh.); our equations predicted, on average, 9% greater aboveground stand biomass for sugar maple and 3% lower biomass for American beech compared with Whittaker et al. Our results suggest that stand age may be an important factor influencing the aboveground allometry and biomass of small yellow birch trees in these developing northern hardwood stands.


Ecology ◽  
1964 ◽  
Vol 45 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Edward Flaccus ◽  
Lewis F. Ohmann

2005 ◽  
Vol 217 (2-3) ◽  
pp. 275-293 ◽  
Author(s):  
Virginie Arielle Angers ◽  
Christian Messier ◽  
Marilou Beaudet ◽  
Alain Leduc

2002 ◽  
Vol 32 (9) ◽  
pp. 1562-1576 ◽  
Author(s):  
Gregory G McGee ◽  
Robin W Kimmerer

The objective of this study was to assess the influence of substrate heterogeneity on epiphytic bryophyte communities in northern hardwood forests of varying disturbance histories. Specifically, we compared bryophyte abundance (m2·ha–1) and community composition among partially cut; maturing, 90- to 100-year-old, even-aged; and old-growth northern hardwood stands in Adirondack Park, New York, U.S.A. Total bryophyte cover from 0 to 1.5 m above ground level on trees [Formula: see text]10 cm diameter at breast height (DBH) did not differ among the three stand types. However, bryophyte community composition differed among host tree species and among stand types. Communities in partially cut and maturing stands were dominated by xerophytic bryophytes (Platygyrium repens, Frullania eboracensis, Hypnum pallescens, Brachythecium reflexum, Ulota crispa), while old-growth stands contained a greater representation of calcicoles and mesophytic species (Brachythecium oxycladon, Anomodon rugelii, Porella platyphylloidea, Anomodon attenuatus, Leucodon brachypus, Neckera pennata). This mesophyte-calcicole assemblage occurred in all stand types but was limited by the abundance of large-diameter (>50 cm DBH), thick-barked, hardwood host trees (Acer saccharum Marsh., Tilia americana L., Fraxinus americana L.). This study suggested that epiphytic bryophyte diversity can be sustained and enhanced in managed northern hardwood forests by maintaining host tree species diversity and retaining large or old, thick-barked residual hardwood stems when applying even-aged and uneven-aged silviculture systems.


2007 ◽  
Vol 24 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Jodi A. Forrester ◽  
Kimberly K. Bohn

Abstract Forest management in northern hardwoods benefits from the use of site preparation treatments when the amount of American beech (Fagus grandifolia Ehrh.) and fern species in the understory interferes with regeneration of more desirable species, e.g., sugar maple (Acer saccharum Marshall). We assessed the cover and diversity of herbaceous and woody species in the ground layer of three Adirondack northern hardwood stands before and 3 years after a mechanical site preparation that removed all trees less than 14 cm with a brush saw. The treatment significantly increased the cover of all species cumulatively, with herbaceous, shrub, and arborescent species increasing significantly more in treated plots than in untreated plots. Sugar maple cover increased more in treated plots than in untreated plots, although American beech did as well. Species richness increased significantly more in treated plots than in untreated plots, but differences in diversity and evenness were not significantly different because of treatment after 3 years. Multivariate analysis indicated only minor changes in the plant community composition. Results show that mechanical site preparation techniques are a viable option for promoting abundance and maintaining diversity of the ground-layer vegetation in northern hardwood forests.


2011 ◽  
Vol 41 (6) ◽  
pp. 1295-1307 ◽  
Author(s):  
Robert P. Long ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

Sugar maple (Acer saccharum Marsh.) is a keystone species in the northern hardwood forest, and decline episodes have negatively affected the growth and health of sugar maple in portions of its range over the past 50+ years. Crown health, growth, survival, and flower and seed production of sugar maple were negatively affected by a widespread decline event in the mid-1980s on the unglaciated Allegheny Plateau in northern Pennsylvania. A long-term liming study was initiated in 1985 to evaluate responses to a one-time application of 22.4 Mg·ha–1 of dolomitic limestone in four northern hardwood stands. Over the 23-year period ending in 2008, sugar maple basal area increment (BAINC) increased significantly (P ≤ 0.05) in limed plots from 1995 through 2008, whereas American beech (Fagus grandifolia Ehrh.) BAINC was unaffected. For black cherry (Prunus serotina Ehrh.), the third principal overstory species, BAINC and survival were reduced in limed plots compared with unlimed plots. Foliar Ca and Mg remained significantly higher in sugar maple foliage sampled 21 years after lime application, showing persistence of the lime effect. These results show long-term species-specific responses to lime application.


Sign in / Sign up

Export Citation Format

Share Document