Fifty years of compositional change in deciduous and coniferous forest types in New Hampshire

1987 ◽  
Vol 17 (5) ◽  
pp. 388-393 ◽  
Author(s):  
William B. Leak

Fifty-year records (52–53 years) from 29 cruise plots on the Bartlett Experimental Forest, New Hampshire, indicated that composition is moving toward a predominance of one or two tolerant species in response to soils (habitat) and, to a lesser extent, elevation. Plots on fine till are moving toward American beech (Fagusgrandifolia Ehrh.) and sugar maple (Acersaccharum Marsh.), with some indication that perpetuation of sugar maple in this region of granitic soils depends upon canopy disturbance. Stands on coarse washed (sandy) till are moving toward beech, with some representation of tolerant conifers. Plots with shallow basal till (well drained to poorly drained), shallow bedrock, or ice-contact gravel are moving toward eastern hemlock (Tsugacanadensis (L.) Carr.) and (or) red spruce (Picearubens Sarg.). Eastern hemlock is successful below elevations of 500–550 m, while red spruce is successful at higher elevations.

2011 ◽  
Vol 28 (3) ◽  
pp. 157-160 ◽  
Author(s):  
Andrew J. Fast ◽  
Mark J. Ducey

Abstract Height-diameter equations are important in modeling forest structure and yield. Twenty-seven height-diameter equations were evaluated for eight tree species occurring in the northern hardwood forest of New Hampshire using permanent plot data from the Bartlett Experimental Forest. Selected models with associated coefficients are presented for American beech, eastern hemlock, paper birch, red maple, red spruce, sugar maple, white ash, yellow birch, and all 16 species combined.


2006 ◽  
Vol 23 (2) ◽  
pp. 141-143 ◽  
Author(s):  
William B. Leak

Abstract Records from the early 1950s on the Bartlett Experimental Forest in New Hampshire showed that the percentage of American beech trees infected with heavy beech scale and Nectria was up to the 80 to 90% range. An inventory of beech bark disease conditions in three stands in 2004 showed that an older, uneven-aged stand managed by individual tree selection for 50 years had over 70% of the basal area in clean- (or disease-free) and rough-barked trees—trees that showed resistance or partial resistance to the disease; 15% of the basal area was clean. In contrast, an adjacent essentially unmanaged stand had well over 60% of the basal area in Nectria-damaged trees—those with sunken bark because of cambial mortality. A young unmanaged stand had a little over 60% of the basal area in mostly rough-barked trees. Records indicate that the amount of beech was not reduced by the disease in any of the inventoried stands. Apparently, single-tree selection over a 50-year period has substantially improved the disease resistance and merchantable potential of the stand.


1975 ◽  
Vol 5 (4) ◽  
pp. 700-705 ◽  
Author(s):  
Timothy J. Fahey ◽  
Gerald E. Lang

The occurrence and duration of concrete frost were observed at 28 forested sites along an elevational gradient on a New Hampshire mountain. The presence of concrete frost was determined with an aluminum probe on 17 dates between November 1973 and June 1974. Concrete frost was found at all sample points in soils of coniferous forest ecosystems above 950-m elevation from mid-November to mid-May; some concrete frost remained into early June. Concrete frost occurred at most sample points in soils of transition zone forests that were composed of mixed hardwoods and conifers for 4 months, in soils of northern hardwoods forests for 2 months, and in soils of successional fir stands at low elevations for 4 months. Winter weather conditions and differences in leaf litter insulation probably accounted for the variation of soil frost beneath these forest types.


2021 ◽  
Vol 4 ◽  
Author(s):  
Nicolas Bélanger ◽  
Alexandre Collin ◽  
Rim Khlifa ◽  
Simon Lebel-Desrosiers

Conifers and deciduous trees greatly differ in regard to their phylogenetics and physiology as well as their influence on soil microclimate and chemical properties. Soil respiration (Rs) in forests can therefore differ depending on tree species composition, and assessments of the variation in Rs in various forest types will lead to a more thorough understanding of the carbon cycle and more robust long-term simulations of soil carbon. We measured Rs in 2019 and 2020 in stands of various species composition in a sugar maple forest near the northern range limit of temperate deciduous forests in Quebec, Canada. Seasonal variations in soil temperature had the largest influence on Rs, but conditions created by the stands also exerted a significant effect. Relative to the typical sugar maple-yellow birch forest (hardwoods), Rs in stands with >20% of basal area from balsam fir (mixedwoods) was increased by 21%. Whilst, when American beech contributed >20% of litterfall mass (hardwood-beech stands), Rs was decreased by 11 and 36% relative to hardwoods and mixedwoods, respectively. As a whole, Rs was significantly higher in mixedwoods than in other forest types, and Rs was significantly higher in hardwoods than in hardwood-beech stands. Sugar maple and American beech at the study site are near their northern range limit, whereas balsam fir is near its southern limit. Rs in mixedwoods was therefore higher than in hardwoods and hardwood-beech stands due to high root activity in the presence of fir, despite colder and drier soils. We estimated that root respiration in mixedwoods was more than threefold that in hardwoods and hardwood-beech stands. The lower Rs in hardwood-beech stands compared to hardwoods points to the lower soil temperature as well as the poor quality of beech litter (low decomposability) as indicated by a generally lower heterotrophic respiration. Other than soil temperature, regression models identified mixedwoods, soil water potential and Mg2+ activity in the soil solution as important predictor variables of Rs with about 90% of its variation explained. Our study shows the benefits of combining forest-specific properties to climatic data for more robust predictions of Rs.


2003 ◽  
Vol 79 (3) ◽  
pp. 462-474 ◽  
Author(s):  
J. Loo ◽  
N. Ives

The Acadian Forest Region comprises the three Maritime Provinces of Canada, each of which has a distinct history resulting in different patterns of land ownership, land use, and impacts on the forest. The region encompasses a high degree of physiographic and biological diversity, being situated where the warm, moist influence of the Gulf Stream from the south collides with the cold Labrador Current and the boreal forest gradually gives way to mostly deciduous forest. Natural forest types in the Acadian Forest Region include rich tolerant hardwood, similar to the deciduous forests to the south; spruce-fir forest, similar to boreal forest to the north; and an array of coniferous, deciduous, and mixed intermediate types. Red spruce (Picea rubens Sarg.), yellow birch (Betula alleghaniensis Britt.), sugar maple (Acer saccharum Marsh.) and balsam fir (Abies balsamea (L.) Mill.) are considered characteristic of the Acadian Forest Region. Except for one quantitative study in one county of New Brunswick, and another study on Prince Edward Island, most knowledge of the historical forest condition has been gleaned from early descriptions by explorers, surveyors, and settlers of the Maritimes region. Although some regions have been affected much more than others, little, if any forested area has escaped human influence over the past four centuries. A general result of human activities has been a shift in successional status and age distribution, with increased frequency of relatively young, often even-aged, early successional forest types including balsam fir, white spruce (Picea glauca (Moench) Voss), red maple (Acer rubrum L.), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.). Both the abundance and age of late-successional species such as sugar maple, red spruce, eastern hemlock (Tsuga canadensis L. Carrière), yellow birch, cedar (Thuja occidentalis L.), and beech (Fagus grandifolia Ehrh.) have declined. Key words: pre-European forest, Maritime Provinces, historical ecology, witness trees, Acadian forest types, natural disturbance


2005 ◽  
Vol 35 (6) ◽  
pp. 1402-1410 ◽  
Author(s):  
Jose Alexander Elvir ◽  
Lindsey Rustad ◽  
G Bruce Wiersma ◽  
Ivan Fernandez ◽  
Alan S White ◽  
...  

The foliar chemistry of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) was studied from 1993 to 2003 at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study, with one watershed treated bimonthly since 1989 with ammonium sulfate ((NH4)2SO4) at a rate of 25.2 kg N·ha–1·year–1. Foliar N concentrations were higher in all tree species within the treated watershed compared with trees within the reference watershed. Foliar Ca and Mg concentrations were lower in American beech and red spruce within the treated watershed. There were no significant differences in foliar K concentrations between watersheds. Foliar P and Mn concentration differences between watersheds were inconsistent among years. Differences in foliar N concentrations between watersheds declined over time in sugar maple but not in red spruce or American beech. Differences in foliar Ca and Mg concentrations between the treated and reference watersheds increased over time for American beech and red spruce, primarily because of a consistent decline in concentrations of these nutrients in trees within the treated watershed. No temporal trends in foliar Ca and Mg concentration differences between watersheds were observed for sugar maple.


2003 ◽  
Vol 79 (3) ◽  
pp. 672-684 ◽  
Author(s):  
Louis Archambault ◽  
Jean Bégin ◽  
Claude Delisle ◽  
Mathieu Fortin

Forest dynamics following a partial cut conducted in the early 1950s in the Lac Édouard Experimental Forest in the Mauricie National Park, Quebec, Canada, were studied. Changes in vegetation were analyzed for the period between 1946 and 2001 in 109 mesic stands of the sugar maple – yellow birch bioclimatic domain. Three cutting intensities were considered: 1) low intensity, 15–30% of the basal area; 2) moderate intensity, 30–45% of the basal area; and 3) uncut. More than fifty years following cutting, the original relative proportion of the deciduous and softwood species was maintained. The relative proportion of basal area occupied by softwood species relative to the total basal area varied only from 2.0% to 7.4%. Red spruce (Picea rubens Sarg.) basal area increased in forest types Cornus (Co) and Oxalis-Cornus (O-Co) whereas balsam fir basal area decreased. In the Viburnum-Oxalis (Vi-O) forest type, sugar maple (Acer saccharum Marsh.) basal area increased and yellow birch (Betula alleghaniensis Britt.) decreased. Cutting areas were not invaded by competition species such as mountain maple (Acer spicatum Lamb.). In the Co and O-Co forest types, the regeneration density is probably sufficient to maintain the current cover type. In the Vi-O forest type, where moderate partial cutting was conducted, the deciduous component could substantially increase. Stands reacted positively to partial cutting. The increased growth of residual stems and the arrival of new stems resulted in 2001 total basal areas that were equal to or larger than those observed before cutting (1946). Key words: forest dynamics, partial cutting, yellow birch, red spruce, balsam fir


1998 ◽  
Vol 28 (3) ◽  
pp. 494-498 ◽  
Author(s):  
Jason D Demers ◽  
Thomas D Lee ◽  
James P Barrett

The relationships between tree species distribution and substrate characteristics were examined at the upper elevational limit of sugar maple (Acer saccharum Marsh.) in the White Mountain National Forest, New Hampshire. Four tree species were studied: sugar maple, balsam fir (Abies balsamea (L.) Mill.), red spruce (Picea rubens Sarg.), and yellow birch (Betula alleghaniensis Britton). At 51 individual trees (>=2.5 cm diameter at breast height) of each species, "substrate type" was described based on the parent material, soil horizons, depth and texture of the B and C horizons, nature of surface boulders, and the depth to and type of impermeable layer. Substrate type was significantly (p < 0.001) associated with tree species. Sugar maple was relatively more frequent on deep fine and compact tills, less frequent on washed or shallow till, and absent on shallow, organic, or grus (weathered granite) substrates. Red spruce, balsam fir, and yellow birch were less sensitive to substrate type. Red spruce and yellow birch were most frequent on organic material or grus over rock. Balsam fir most frequently occurred on washed till. As the frequency of substrates favorable to sugar maple declined with elevation, it is possible that the upper elevational range limit of this species is influenced by substrate availability.


1990 ◽  
Vol 20 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
F. A. Bazzaz ◽  
J. S. Coleman ◽  
S. R. Morse

We examined how elevated CO2 affected the growth of seven co-occurring tree species: American beech (Fagusgrandifolia Ehrh.), paper birch (Betulapapyrifera Marsh.), black cherry (Prunusserotina Ehrh.), white pine (Pinusstrobus L.), red maple (Acerrubrum L.), sugar maple (Acersaccharum Marsh.), and eastern hemlock (Tsugacanadensis (L.) Carr). We also tested whether the degree of shade tolerance of species and the age of seedlings affected plant responses to enhanced CO2 levels. Seedlings that were at least 1 year old, for all species except beech, were removed while dormant from Harvard Forest, Petersham, Massachusetts. Seeds of red maple and paper birch were obtained from parent trees at Harvard Forest, and seeds of American beech were obtained from a population of beeches in Nova Scotia. Seedlings and transplants were grown in one of four plant growth chambers for 60 d (beech, paper birch, red maple, black cherry) or 100 d (white pine, hemlock, sugar maple) under CO2 levels of 400 or 700 μL•L−1. Plants were then harvested for biomass and growth determinations. The results showed that the biomass of beech, paper birch, black cherry, sugar maple, and hemlock significantly increased in elevated CO2, but the biomass of red maple and white pine only marginally increased in these conditions. Furthermore, there were large differences in the magnitude of growth enhancement by increased levels of CO2 between species, so it seems reasonable to predict that one consequence of rising levels of CO2 may be to increase the competitive ability of some species relative to others. Additionally, the three species exhibiting the largest increase in growth with increased CO2 concentrations were the shade-tolerant species (i.e., beech, sugar maple, and hemlock). Thus, elevated CO2 levels may enhance the growth of relatively shade-tolerant forest trees to a greater extent than growth of shade-intolerant trees, at least under the light and nutrient conditions of this experiment. We found no evidence to suggest that the age of tree seedlings greatly affected their response to elevated CO2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document