Effects of crown loss as a result of the 1998 ice storm on foliar metabolites in sugar maple and American beech growing in Vermont and New Hampshire; how/when trees respond to the effects of injury

Author(s):  
Rakesh Minocha ◽  
Stephanie Long
1987 ◽  
Vol 17 (5) ◽  
pp. 388-393 ◽  
Author(s):  
William B. Leak

Fifty-year records (52–53 years) from 29 cruise plots on the Bartlett Experimental Forest, New Hampshire, indicated that composition is moving toward a predominance of one or two tolerant species in response to soils (habitat) and, to a lesser extent, elevation. Plots on fine till are moving toward American beech (Fagusgrandifolia Ehrh.) and sugar maple (Acersaccharum Marsh.), with some indication that perpetuation of sugar maple in this region of granitic soils depends upon canopy disturbance. Stands on coarse washed (sandy) till are moving toward beech, with some representation of tolerant conifers. Plots with shallow basal till (well drained to poorly drained), shallow bedrock, or ice-contact gravel are moving toward eastern hemlock (Tsugacanadensis (L.) Carr.) and (or) red spruce (Picearubens Sarg.). Eastern hemlock is successful below elevations of 500–550 m, while red spruce is successful at higher elevations.


2015 ◽  
Vol 45 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Joshua M. Halman ◽  
Paul G. Schaberg ◽  
Gary J. Hawley ◽  
Christopher F. Hansen ◽  
Timothy J. Fahey

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995. Dominant sugar maple trees were unaffected by the treatment, but nondominant sugar maple tree growth responded positively to Ca treatment. Although plots were mainly composed of sugar maple, American beech experienced the greatest growth on Al-treated plots. Increases in tree mortality on Al-treated plots may have released surviving American beech and increased their growth. The Al tolerance of American beech and the Ca:Al sensitivity of sugar maple contributed to divergent growth patterns that influenced stand productivity and composition. Given that acidic inputs are expected to continue, the growth dynamics associated with Al treatment may have direct relevance to future conditions in native forests.


1990 ◽  
Vol 20 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
F. A. Bazzaz ◽  
J. S. Coleman ◽  
S. R. Morse

We examined how elevated CO2 affected the growth of seven co-occurring tree species: American beech (Fagusgrandifolia Ehrh.), paper birch (Betulapapyrifera Marsh.), black cherry (Prunusserotina Ehrh.), white pine (Pinusstrobus L.), red maple (Acerrubrum L.), sugar maple (Acersaccharum Marsh.), and eastern hemlock (Tsugacanadensis (L.) Carr). We also tested whether the degree of shade tolerance of species and the age of seedlings affected plant responses to enhanced CO2 levels. Seedlings that were at least 1 year old, for all species except beech, were removed while dormant from Harvard Forest, Petersham, Massachusetts. Seeds of red maple and paper birch were obtained from parent trees at Harvard Forest, and seeds of American beech were obtained from a population of beeches in Nova Scotia. Seedlings and transplants were grown in one of four plant growth chambers for 60 d (beech, paper birch, red maple, black cherry) or 100 d (white pine, hemlock, sugar maple) under CO2 levels of 400 or 700 μL•L−1. Plants were then harvested for biomass and growth determinations. The results showed that the biomass of beech, paper birch, black cherry, sugar maple, and hemlock significantly increased in elevated CO2, but the biomass of red maple and white pine only marginally increased in these conditions. Furthermore, there were large differences in the magnitude of growth enhancement by increased levels of CO2 between species, so it seems reasonable to predict that one consequence of rising levels of CO2 may be to increase the competitive ability of some species relative to others. Additionally, the three species exhibiting the largest increase in growth with increased CO2 concentrations were the shade-tolerant species (i.e., beech, sugar maple, and hemlock). Thus, elevated CO2 levels may enhance the growth of relatively shade-tolerant forest trees to a greater extent than growth of shade-intolerant trees, at least under the light and nutrient conditions of this experiment. We found no evidence to suggest that the age of tree seedlings greatly affected their response to elevated CO2 concentrations.


2015 ◽  
Vol 45 (6) ◽  
pp. 632-638 ◽  
Author(s):  
Kim Bannon ◽  
Sylvain Delagrange ◽  
Nicolas Bélanger ◽  
Christian Messier

Studies have reported divergent results on the effect of soil fertility and canopy opening on understory density and growth of sugar maple (AS; Acer saccharum Marsh.) and American beech (FG; Fagus grandifolia Ehrh.). The main objective of this study was to evaluate the effect of a gradient of canopy opening and soil fertility on the density and growth of AS and FG saplings in southwestern Quebec, Canada. We investigated 56 stands containing both AS and FG that were subjected to different disturbance history types (DHTs) (UF, unmanaged forest; PC, partial cut; and CC, clearcut) on various soil types. AS and FG absolute and relative sapling density varied greatly among the 56 stands; however, no significant effects of DHT, soil nutrient availability, or their interaction were found. Both species responded positively in terms of radial growth to canopy openings, with FG growth being slightly better than AS growth in PC stands compared with other canopy treatments. Contrary to our hypothesis, AS did not show significantly higher growth than FG following clear-cutting. These results do not support the idea that AS abundance and growth could be promoted by increasing the intensity of the canopy opening during harvest, at least on the generally acidic and base-poor soils that were investigated.


2009 ◽  
Vol 39 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet

Recently, sugar maple ( Acer saccharum Marsh.) decline in northeastern North America has been regarded as a major factor structuring hardwood forests by favouring American beech ( Fagus grandifolia Ehrh.) in the understory of maple-dominated stands. To determine whether soil fertility differences associated with sugar maple decline may have promoted the expansion of American beech, we explored the relationships between the soil base status and the sapling and tree strata density and composition, using data from 426 permanent sample plots distributed throughout Quebec. Our results indicate that American beech is currently expanding in the sugar maple range of Quebec. The abundance and proportion of American beech in the sapling stratum are mainly associated with the proportion of American beech in the tree stratum, the relative basal area of dead sugar maple trees, and the base status of soils. In accordance with the many studies reporting on the high sensitivity of sugar maple to the acid–base status of soils and the decline of the sugar maple population, this study supports the hypothesis that soil base cation depletion, caused in part by atmospheric acid deposition, is among the main factors involved in the present-day expansion of American beech over a large area in Quebec.


2013 ◽  
Vol 89 (04) ◽  
pp. 512-524 ◽  
Author(s):  
Martin Béland ◽  
Bruno Chicoine

We examined applicability of various partial cutting systems in order to regenerate tolerant hardwood stands dominated by sugar maple (Acer saccarhum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) on northern New Brunswick J.D. Irving Ltd. freehold land. Sampling of 1065 one-m2 plots in 31 stands managed by selection cutting, shelterwood method and strip or patch cutting and in six control stands allowed a 15-year retrospective study of natural regeneration in stands of low residual densities and with minimal soil disturbance and no control of competing vegetation. Beech regeneration was most abundant in the patch cuts, yellow birch in shelterwood stands and sugar maple in the selection system areas. Results suggest that initial stand conditions influence the composition of the regeneration more than the prescribed treatment. At the stand scale (a few hectares), sugar maple recruitment was positively influenced by its proportion in the initial stand, and negatively by the cover of herbs and shrubs. Yellow birch regeneration was mainly affected by shrub competition. At the plot (1 m2) scale, mineral soil and decayed wood substrates and ground-level transmitted light were determinant factors for yellow birch regeneration. Beech-dominated stands were likely to regenerate to beech. A dense beech sucker understory was promoted in harvested patches. Areas with dense understory of American beech, shrubs, or herbs require site preparation to reduce interference either before or at the time of partial cutting. Shelterwood seed cutting and selection cutting should leave a residual of 12 m2/ha and 17 m2/ha respectively in seed trees uniformly distributed.


2007 ◽  
Vol 24 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Jodi A. Forrester ◽  
Kimberly K. Bohn

Abstract Forest management in northern hardwoods benefits from the use of site preparation treatments when the amount of American beech (Fagus grandifolia Ehrh.) and fern species in the understory interferes with regeneration of more desirable species, e.g., sugar maple (Acer saccharum Marshall). We assessed the cover and diversity of herbaceous and woody species in the ground layer of three Adirondack northern hardwood stands before and 3 years after a mechanical site preparation that removed all trees less than 14 cm with a brush saw. The treatment significantly increased the cover of all species cumulatively, with herbaceous, shrub, and arborescent species increasing significantly more in treated plots than in untreated plots. Sugar maple cover increased more in treated plots than in untreated plots, although American beech did as well. Species richness increased significantly more in treated plots than in untreated plots, but differences in diversity and evenness were not significantly different because of treatment after 3 years. Multivariate analysis indicated only minor changes in the plant community composition. Results show that mechanical site preparation techniques are a viable option for promoting abundance and maintaining diversity of the ground-layer vegetation in northern hardwood forests.


2003 ◽  
Vol 79 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Anthony Hopkin ◽  
Tim Williams ◽  
Robert Sajan ◽  
John Pedlar ◽  
Cathy Nielsen

Following the 1998 ice storm, tree mortality and crown damage were monitored on permanent plots across eastern Ontario from 1998 until 2001. Conifer species were less damaged than hardwoods. Hardwood tree species showing the greatest crown damage included aspen, (Populus tremuloides), basswood (Tilia americana), and white birch (Betula papyrifera); major species showing the least damage included sugar maple (Acer saccharum), red oak (Quercus rubra) and hickory (Carya spp.). Generally, smaller diameter trees showed less damage than larger diameter trees. Significant mortality was recorded to silver maple (Acer saccharinum), basswood, ash (Fraxinus spp.) and aspen in 1998, although mortality in 2000 and 2001 was about 1–2%. Trees sustaining > 75% crown damage usually died by 2001. Key words: ice storm, ice damage, forest health


2003 ◽  
Vol 33 (2) ◽  
pp. 325-329 ◽  
Author(s):  
Kevin T Smith ◽  
Walter C Shortle

Ice storms and resulting injury to tree crowns occur frequently in North America. Reaction of land managers to injury caused by the regional ice storm of January 1998 had the potential to accelerate the harvesting of northern hardwoods due to concern about the future loss of wood production by injured trees. To assess the effect of this storm on radial stem growth, increment cores were collected from northern hardwood trees categorized by crown injury classes. For a total of 347 surviving canopy dominant and subdominant trees, a radial growth index was calculated (mean annual increment for 1998–2000 divided by the mean annual increment for 1995–1997). Sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britt.), white ash (Fraxinus americana L.), and red maple (Acer rubrum L.) categorized in injury class A (crown loss of less than one-half) had mean growth index values of approximately 1.0, indicating no loss of mean radial growth after 3 years. For injury class B (crown loss of one-half to three-quarters) and class C (crown loss greater than three-quarters), growth index values significantly decreased for sugar maple, yellow birch, and red maple. For white ash, growth index values of classes B and C were not significantly different from those of class A trees. Growth index values of A. saccharum and A. rubrum in injury class C were the lowest of those measured. These results indicated that the severity of growth loss due to crown injury depends on tree species and crown replacement as well as the extent of crown loss.


2003 ◽  
Vol 33 (5) ◽  
pp. 862-869 ◽  
Author(s):  
Jose Alexander Elvir ◽  
G Bruce Wiersma ◽  
Alan S White ◽  
Ivan J Fernandez

Responses in basal area increment (BAI) of sugar maple (Acer saccharum Marsh.) and red spruce (Picea rubens Sarg.) to chronic ammonium sulfate ((NH4)2SO4) treatment were examined at the Bear Brook Watershed in Maine. The Bear Brook Watershed is a pair-watershed forest ecosystem study with West Bear watershed treated with (NH4)2SO4 at a rate of 1800 equiv.·ha–1·year–1 since 1989, while East Bear watershed serves as a reference. Following 10 years of treatment, BAI was significantly higher for sugar maple trees growing in the treated watershed, with yearly increases relative to the reference watershed ranging from 13% in 1999 to 104% in 1996. The increase in sugar maple radial growth was attributed to a fertilization effect from the (NH4)2SO4 treatment. A reduction in BAI in sugar maple growing in the treated watershed observed in 1998 and 1999 was attributed to internal stresses and growth allocation to crown recovery after the severe 1998 ice storm. Red spruce showed no BAI growth responses to the treatment. Lower foliar Mg and Ca concentrations in red spruce in the treated watershed and lower soil responses to N enrichment in treated softwood stands compared with treated hardwood stands could explain the lack of BAI response in red spruce.


Sign in / Sign up

Export Citation Format

Share Document