Effect of progesterone on the contractile response of isolated pulmonary artery in rabbits

2001 ◽  
Vol 79 (6) ◽  
pp. 545-550 ◽  
Author(s):  
Hong-Fang Li ◽  
Tian-Zhen Zheng ◽  
Wei Li ◽  
Song-Yi Qu ◽  
Chen-Lie Zhang

The purpose of this study was to assess the direct effect of progesterone on rabbit pulmonary arteries and to examine the mechanism of its action. Rings of pulmonary artery from male rabbits were suspended in organ baths containing Krebs solution, and isometric tension was measured. The response to progesterone was investigated in arterial rings contracted with noradrenaline (NA), KCl, and CaCl2. The effects of endothelium, nitric oxide(NO), prostaglandins, cyclic GMP(cGMP), and the adrenergic β-receptor on progesterone-induced relaxation were also assessed. Progesterone inhibited the vasocontractivity to NA, KCl, and CaCl2, and relaxed rabbit pulmonary artery. The relaxing response of progesterone in pulmonary artery was significantly reduced by removal of endothelium, inhibitors of nitric oxide synthase and guanylate cyclase, but not by prostaglandin synthase inhibitor and blockage of the adrenergic β-receptor. In Ca2+-free (0.1 mM EGTA) Krebs solution, progesterone inhibited NA-induced contraction that was intracellular Ca2+-dependent, but didn't affect the contraction of extracellular Ca2+-dependent component. Our results suggest that progesterone induces relaxation of isolated rabbit pulmonary arteries partially via NO and cGMP. Progesterone may also inhibit Ca2+ influx through potential-dependent calcium channels (PDCs) and Ca2+ release from intracellular stores.Key words: progesterone, pulmonary artery, Ca2+ channel, endothelium.

2000 ◽  
Vol 279 (4) ◽  
pp. H1786-H1795 ◽  
Author(s):  
Kaoru M. Ito ◽  
Miharu Sato ◽  
Keiko Ushijima ◽  
Masaaki Nakai ◽  
Katsuaki Ito

We examined how monocrotaline (MCT), which impairs the endothelium and causes pulmonary hypertension, altered the endothelial regulation of pulmonary artery functions. Rats were given a single injection of MCT (60 mg/kg sc). Pulmonary arteries were depolarized to −48.3 ± 2.6 and −39.8 ± 2.2 mV at 2 and 3 wk after treatment with MCT, respectively (control arteries −59.9 ± 1.9 mV). The basal tone in the resting state was only slightly elevated at 3 wk in endothelium-intact arteries. Removal of the endothelium caused further depolarization in MCT-affected arteries at 2 wk, but not at 3 wk, and greatly elevated the basal tone at 2 and 3 wk. N ω-nitro-l-arginine (200 μM), a nitric oxide synthase inhibitor, also caused depolarization in endothelium-intact arteries in both groups and elevated the basal tone of MCT-affected arteries. The relaxant responses of pulmonary arteries to ACh and A-23187 were depressed at 2 and 3 wk after MCT treatment. Thus chronic impairment of the endothelium altered the property of the pulmonary artery leading to depolarization. During the early stage of depolarization, a rise in the basal tone was offset by nitric oxide released from the injured endothelium.


2007 ◽  
Vol 292 (4) ◽  
pp. H1812-H1820 ◽  
Author(s):  
Girija G. Konduri ◽  
Ivane Bakhutashvili ◽  
Annie Eis ◽  
Kirkwood Pritchard

Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O2•−) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso- N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-l-arginine methyl ester (l-NAME) or the O2•− scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. l-NAME, the NO precursor l-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by l-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O2•− in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O2•− in response to ATP, and this was attenuated by the NOS antagonist l-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.


1995 ◽  
Vol 268 (3) ◽  
pp. L509-L518 ◽  
Author(s):  
M. J. Griffiths ◽  
S. Liu ◽  
N. P. Curzen ◽  
M. Messent ◽  
T. W. Evans

Our aim was to demonstrate increased NO activity from inducible NO synthase (iNOS) in pulmonary arteries (PA) from rats treated with endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip]. LPS treatment diminished the contractile response of PA to potassium chloride (KCl) and phenylephrine (PE) and increased levels of guanosine 3',5'-cyclic monophosphate (cGMP) in endothelium-denuded vessels. Both the NO synthase (NOS) antagonists NG-monomethyl-L-arginine (L-NMMA; nonselective) and aminoguanidine (selective for iNOS) enhanced PE-induced contraction in endothelium-denuded vessels from LPS-treated rats. Furthermore, L-NMMA-induced contraction of endothelium-denuded vessels from LPS-treated rats was stereospecifically antagonized by L-arginine and associated with decreased cGMP levels. These data suggest that NO is produced in increased amounts from PA smooth muscle after LPS treatment. LPS treatment caused increased expression of mRNA for iNOS in PA. This effect of LPS was attenuated by pretreatment with dexamethasone, suggesting that induction of NOS in PA smooth muscle underlies the increased NO activity associated with LPS administration.


1997 ◽  
Vol 86 (4) ◽  
pp. 936-944 ◽  
Author(s):  
Linda M. Gambone ◽  
Paul A. Murray ◽  
Nicholas A. Flavahan

Background Endothelium-derived nitric oxide causes vasodilation in part by increasing the dilator activity of other endothelium-derived mediators, including prostacyclin and a K+ATP channel-dependent hyperpolarizing factor. Although previous studies have proposed that isoflurane (ISO) depresses endothelium-dependent vasorelaxation by inhibiting endothelium-derived nitric oxide activity, the effects of ISO on the interactions among endothelium-derived dilators have not been characterized. The aim of this study was to determine the mechanisms underlying the inhibitory effect of ISO on endothelium-dependent relaxation in canine pulmonary arteries. Specifically, the goal was to assess the effects of ISO on the individual actions and on the synergistic interactions of these endothelium-derived mediators. Methods Canine pulmonary arterial rings were suspended for isometric tension recording. The effects of 1 minimum alveolar concentration ISO (0.4 mM) on vasorelaxation responses to bradykinin, A23187, acetylcholine, cromakalim, and SIN-1 were assessed in phenylephrine-precontracted rings with and without pretreatment with a nitric oxide synthase inhibitor (N omega-nitro-L-arginine methyl ester; L-NAME), a cyclooxygenase inhibitor (indomethacin), or a K+ATP channel inhibitor (glybenclamide). Results Isofluane attenuated pulmonary vasorelaxation induced by bradykinin, A23187, and cromakalim but had no effect on relaxation induced by acetylcholine or SIN-1. Neither the nitric oxide-mediated nor the prostacyclin-mediated components of relaxation induced by bradykinin and A23187 were altered by ISO. However, ISO abolished the K+ATP-mediated component of relaxation and the K+ATP-dependent synergistic interaction between nitric oxide and prostacyclin. Conclusions These results suggest that ISO selectively attenuates endothelium-dependent relaxation in canine pulmonary arteries. It exerts its inhibitory effect by interfering with a synergistic interaction between nitric oxide and prostacyclin, possibly via an effect on K+ATP channels.


2000 ◽  
Vol 88 (6) ◽  
pp. 2008-2014 ◽  
Author(s):  
Lynelle R. Johnson ◽  
M. Harold Laughlin

Exercise training increases acetylcholine-induced pulmonary vasorelaxation in pigs with coronary occlusion. The present study tested the hypothesis that chronic exercise training enhances endothelium-mediated vasorelaxation in pulmonary arteries from normal pigs. Yucatan miniswine exercised for 16 wk on a treadmill (Ex); control pigs (Sed) remained in pens. Pulmonary artery rings (2- to 3-mm OD) were studied using standard isometric techniques. Contractile responses to 80 mM KCl and norepinephrine (NE) were determined. Vessels were constricted with levels of NE that resulted in half-maximal contraction to examine endothelium-dependent relaxation to ACh and endothelium-independent relaxation to sodium nitroprusside in the presence and absence of nitric oxide synthase inhibition, cyclooxygenase inhibition, and endothelial denudation. Arteries from Ex pigs developed increased contraction to 80 mM KCl, but the response to NE did not differ between groups. Endothelium-dependent and endothelium-independent responses did not differ between Sed and Ex in the presence or absence of pharmacological inhibitors or denudation. We conclude that chronic exercise training does not alter endothelium-dependent or endothelium-independent vasorelaxation responses of pulmonary arteries from normal pigs.


1998 ◽  
Vol 275 (3) ◽  
pp. G550-G555 ◽  
Author(s):  
George A. Sarosi ◽  
Douglas C. Barnhart ◽  
Douglas J. Turner ◽  
Michael W. Mulholland

Mobilization of intracellular Ca2+ stores is coupled to Ca2+ influx across the plasma membrane, a process termed capacitative Ca2+ entry. Capacitative Ca2+ entry was examined in cultured guinea pig enteric glia exposed to 100 μM ATP, an inositol trisphosphate-mediated Ca2+-mobilizing agonist, and to 1 μM thapsigargin, an inhibitor of microsomal Ca2+ ATPase. Both agents caused mobilization of intracellular Ca2+stores followed by influx of extracellular Ca2+. This capacitative Ca2+ influx was inhibited by Ni2+ (88 ± 1%) and by La3+ (87 ± 1%) but was not affected by L- or N-type Ca2+channel blockers. Pretreatment of glia with 100 nM phorbol 12-myristate 13-acetate for 24 h decreased capacitative Ca2+ entry by 48 ± 2%. Chelerythrine (0.1–10 μM), a specific antagonist of protein kinase C (PKC), dose dependently inhibited capacitative Ca2+ entry. The nitric oxide synthase inhibitor N G-nitro-l-arginine (1 mM) decreased Ca2+ influx by 42 ± 1%. Capacitative Ca2+ entry was inhibited to a similar degree by the guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Capacitative Ca2+ entry occurs in enteric glial cells via lanthanum-inhibitable channels through a process regulated by PKC and nitric oxide.


2015 ◽  
Vol 309 (9) ◽  
pp. L1009-L1017 ◽  
Author(s):  
Girija G. Konduri ◽  
Adeleye J. Afolayan ◽  
Annie Eis ◽  
Kirkwood A. Pritchard ◽  
Ru-Jeng Teng

An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pulmonary arteries from 137-day gestation fetal lambs (term = 144 days). We exposed PAEC to a simulated transition from fetal to (3% O2) to normoxic (21%) or hyperoxic (95% O2) postnatal Po2 or to the nitric oxide synthase (NOS) agonist ATP. We assessed the effect of O2 and ATP on eNOS interactions with the mitochondrial outer membrane protein porin and with the chaperone hsp90. We also investigated the effect of decoy peptides that blocked eNOS interactions with porin or hsp90 on PAEC angiogenesis and vasodilator function of pulmonary arteries. Transition of fetal PAEC from 3 to 21% O2 but not to 95% O2 or exposure to ATP increased eNOS association with hsp90 and porin. Decoy peptides that blocked eNOS interactions decreased NO release, increased O2 consumption and mitochondrial ROS levels, and impaired PAEC angiogenesis. Decoy peptides also inhibited the relaxation responses of pulmonary artery rings and dilation of resistance size pulmonary arteries to ATP. The mitochondrial-antioxidant mito-ubiquinone restored the response to ATP in decoy peptide-treated pulmonary arteries. These data indicate that targeting eNOS to mitochondria decreases endothelial oxidative stress and facilitates vasodilation in fetal pulmonary circulation at birth.


2011 ◽  
Vol 301 (2) ◽  
pp. H409-H417 ◽  
Author(s):  
Takayuki Matsumoto ◽  
Rita C. Tostes ◽  
R. Clinton Webb

Uridine adenosine tetraphosphate (Up4A) was reported as a novel endothelium-derived contracting factor. Up4A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up4A in hypertensive states remain unclear. The present study examined the effects of Up4A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up4A versus arteries from control uninephrectomized rats in the absence and presence of NG-nitro-l-arginine (nitric oxide synthase inhibitor). On the other hand, the Up4A-induced contraction in PA was similar between the two groups. Up4A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X1 antagonist) in RA from both groups. Furthermore, 2-thiouridine 5′-triphosphate tetrasodium salt (2-ThioUTP; P2Y2 agonist)-, uridine-5′-(γ-thio)-triphosphate trisodium salt (UTPγS; P2Y2/P2Y4 agonist)-, and 5-iodouridine-5′- O-diphosphate trisodium salt (MRS 2693; P2Y6 agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y2-, P2Y4-, and P2Y6 receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up4A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up4A-stimulated ERK activation was increased. These data are the first to indicate that Up4A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up4A-induced contraction. Up4A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.


Sign in / Sign up

Export Citation Format

Share Document