Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the α1-adrenoceptors

2003 ◽  
Vol 81 (3) ◽  
pp. 234-246 ◽  
Author(s):  
Ghassan Bkaily ◽  
Nesrine El-Bizri ◽  
Michel Bui ◽  
Rami Sukarieh ◽  
Danielle Jacques ◽  
...  

The effects of methoxamine, a selective α1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of α1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of α1-adrenoreceptors significantly increased the L-type calcium current (ICa(L)) but had no effect on the T-type calcium current (ICa(T)), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective α1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in ICa(L), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional α1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of α1-receptor agonists like methoxamine.Key words: α1-adrenoceptor, autoantibody, heart cells, calcium, ion channels, confocal microscopy.

2002 ◽  
Vol 88 (3) ◽  
pp. 1475-1490 ◽  
Author(s):  
Pascal Benquet ◽  
Janine Le Guen ◽  
Yves Pichon ◽  
François Tiaho

The contribution of voltage-gated calcium channels (VGCC) to the development of cultured embryonic cockroach brain neurons was assessed using pharmacological agents. VGCC currents were recorded using the patch-clamp technique and were found to be blocked dose-dependently by micromolar concentrations of mibefradil. The activation and inactivation properties of the calcium channels enable a sizeable calcium current to flow at rest (about −30 and −20 mV in high-potassium culture media). As expected, the cytoplasmic-free calcium concentration was found to rise when the extracellular potassium concentration was raised from 3 to 15 and 30 mM. The effects of VGCC blockers and calcium chelators were different in fresh and in mature cultures in which the neurons were connected to each other to form a defined network. In fresh cultures, the two non-selective VGCC blockers (verapamil and mibefradil) induced a dose-dependent cell death that was proportional to their blocking effect on I Ba. This effect could not be prevented by addition of fetal calf serum to the culture medium. A similar effect was obtained using intra- or extracellular calcium chelating agents (10 μM BAPTA-AM or 10 mM EGTA). Quite unexpectedly, blockade of the P/Q-like (ω-Aga WA-sensitive) component of the calcium current by 500 nM of ω-AgaTx IVA had no lethal effect, suggesting that the corresponding channels are not involved in the survival mechanism. As expected from their lack of effect on I Ba, isradipine, nifedipine, and ω-CgTx GVIA did not induce cell death. When the neurons started growing neurites, their sensitivity to calcium channel blockade by mibefradil decreased, indicating a correlation between neurite outgrowth and resistance to calcium depletion. In mature cultures, the neurons became resistant to mibefradil, verapamil, and BAPTA-AM. However, these agents, as well as ω-AgaTx IVA, had a significant inhibitory effect on the increase in diameter of the connectives that linked adjacent clusters of neurons. This effect has been shown to result, in the case of mibefradil, from an inhibition of neurite outgrowth characterized by a significant reduction of the number of primary neurites and secondary branchings but not to a significant modification of the diameter of individual neurites. These results support the view that, as in vertebrates, calcium influx through VGCC plays an important role in survival and neurite outgrowth of cultured embryonic insect neurons. The differential contribution of the P/Q-like and R-like (ω-Aga WA-sensitive) calcium channels in these processes is discussed.


1968 ◽  
Vol 52 (3) ◽  
pp. 643-665 ◽  
Author(s):  
Robert L. DeHaan ◽  
Sheldon H. Gottlieb

Embryonic chick heart cells were cultured on a plastic surface in sparse sheets of 2–50 cells mutually in contact, or isolated as single cells. Conditions are described which permitted conjoint cells to be impaled with recording microelectrodes with 75% success, and isolated single cells with 8% success. It is proposed that cells in electrical contact with neighbors are protected from irreversible damage by the penetrating electrode, by a flow of ions or other substances from connected cells across low-impedance intercellular junctions. Action potentials recorded from conjoint and isolated single cells were similar in form and amplitude. The height or shape of the action potential thus appears not to depend upon spatial relationships of one cell to another. As the external potassium concentration was increased from 1.3 mM to 6 mM, cells became hyperpolarized while the afterhyperpolarization was reduced. At higher potassium levels, the afterhyperpolarization disappeared, the slope of the slow diastolic depolarization decreased, and resting potential fell along a linear curve with a slope of 61 mv per 10-fold increase in potassium. In pacemaker cells the diastolic depolarization consists of two phases: (a) recovery from the afterpotential of the previous action potential and (b) the pacemaker potential. These phases are separated by a point of inflection, and represent manifestations of different mechanisms. Evidence is presented that it is the point of inflection (PBA) rather than the point of maximal diastolic potential, that should be taken as the resting potential.


1995 ◽  
Vol 74 (6) ◽  
pp. 2251-2257 ◽  
Author(s):  
I. Ehrlich ◽  
K. S. Elmslie

1. We studied the mechanism of voltage-dependent inhibition of N-type calcium current by norepinephrine (NE) and vasoactive intestinal peptide (VIP) in adult rat superior cervical ganglion (SCG) neurons using the whole cell patch-clamp technique. 2. The voltage dependence of inhibition is manifest in the reversal of inhibition by strong depolarization. We tested the hypothesis that this voltage dependence results from disruption of G proteins binding to calcium channels. According to this hypothesis, the kinetics of calcium current reinhibition following a strong depolarization should become faster for higher concentrations of active G proteins. 3. Assuming that larger inhibitions result from higher concentrations of active G proteins, we used different concentrations of NE to alter the amplitude of inhibition and, thus, the active G protein concentration. We found that the kinetics of reinhibition at -80 mV following a depolarizing pulse to +80 mV were faster for larger inhibitions. 4. VIP induces voltage-dependent inhibition of N-current via a different G protein (Gs) than that of NE (Go). We found that the effect of VIP on reinhibition kinetics was identical to that produced by NE. 5. Combined application of NE and VIP did not greatly increase the amplitude of the inhibition but significantly increased the rate of reinhibition. Thus NE plus VIP appear to greatly increase the concentration of the molecule binding to the channel (G protein according to the hypothesis). 6. The kinetics of calcium current disinhibition during strong depolarization (step to +80 mV) did not change with the size of the inhibition induced by NE, VIP or application of NE and VIP together. 7. Both the concentration-dependent reinhibition kinetics and concentration-independent disinhibition kinetics are consistent with the hypothesis that active G proteins bind directly to N-type calcium channels to modulate their activity in rat sympathetic neurons.


1968 ◽  
Vol 52 (4) ◽  
pp. 643-665 ◽  
Author(s):  
Robert L. DeHaan ◽  
Sheldon H. Gottlieb

Embryonic chick heart cells were cultured on a plastic surface in sparse sheets of 2–50 cells mutually in contact, or isolated as single cells. Conditions are described which permitted conjoint cells to be impaled with recording microelectrodes with 75 % success, and isolated single cells with 8 % success. It is proposed that cells in electrical contact with neighbors are protected from irreversible damage by the penetrating electrode, by a flow of ions or other substances from connected cells across low-impedance intercellular junctions. Action potentials recorded from conjoint and isolated single cells were similar in form and amplitude. The height or shape of the action potential thus appears not to depend upon spatial relationships of one cell to another. As the external potassium concentration was increased from 1.3 mM to 6 mM, cells became hyperpolarized while the afterhyperpolarization was reduced. At higher potassium levels, the afterhyperpolarization disappeared, the slope of the slow diastolic depolarization decreased, and resting potential fell along a linear curve with a slope of 61 mv per 10-fold increase in potassium. In pacemaker cells the diastolic depolarization consists of two phases: (a) recovery from the afterpotential of the previous action potential and (b) the pacemaker potential. These phases are separated by a point of inflection, and represent manifestations of different mechanisms. Evidence is presented that it is the point of inflection (PBA) rather than the point of maximal diastolic potential, that should be taken as the resting potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iva Synková ◽  
Markéta Bébarová ◽  
Irena Andršová ◽  
Larisa Chmelikova ◽  
Olga Švecová ◽  
...  

AbstractThe variant c.926C > T (p.T309I) in KCNQ1 gene was identified in 10 putatively unrelated Czech families with long QT syndrome (LQTS). Mutation carriers (24 heterozygous individuals) were more symptomatic compared to their non-affected relatives (17 individuals). The carriers showed a mild LQTS phenotype including a longer QTc interval at rest (466 ± 24 ms vs. 418 ± 20 ms) and after exercise (508 ± 32 ms vs. 417 ± 24 ms), 4 syncopes and 2 aborted cardiac arrests. The same haplotype associated with the c.926C > T variant was identified in all probands. Using the whole cell patch clamp technique and confocal microscopy, a complete loss of channel function was revealed in the homozygous setting, caused by an impaired channel trafficking. Dominant negativity with preserved reactivity to β-adrenergic stimulation was apparent in the heterozygous setting. In simulations on a human ventricular cell model, the dysfunction resulted in delayed afterdepolarizations (DADs) and premature action potentials under β-adrenergic stimulation that could be prevented by a slight inhibition of calcium current. We conclude that the KCNQ1 variant c.926C > T is the first identified LQTS-related founder mutation in Central Europe. The dominant negative channel dysfunction may lead to DADs under β-adrenergic stimulation. Inhibition of calcium current could be possible therapeutic strategy in LQTS1 patients refractory to β-blocker therapy.


1995 ◽  
Vol 182 (1) ◽  
pp. 59-65 ◽  
Author(s):  
I Ferrari ◽  
M J Levin ◽  
G Wallukat ◽  
R Elies ◽  
D Lebesgue ◽  
...  

Sera from chagasic patients possess antibodies recognizing the carboxy-terminal part of the ribosomal P0 protein of Trypanosoma cruzi and the second extracellular loop of the human beta 1-adrenergic receptor. Comparison of both peptides showed that they contain a pentapeptide with very high homology (AESEE in P0 and AESDE in the human beta 1-adrenergic receptor). Using a competitive immunoenzyme assay, recognition of the peptide corresponding to the second extracellular loop (H26R) was inhibited by both P0-14i (AAAESEEEDDDDDF) and P0-beta (AESEE). Concomitantly, recognition of P0-beta was inhibited with the H26R peptide. Recognition of P0 in Western blots was inhibited by P0-14i, P0-beta, and H26R, but not by a peptide corresponding to the second extracellular loop of the human beta 2-adrenergic receptor or by an unrelated peptide. Autoantibodies affinity purified with the immobilized H26R peptide were shown to exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats. This effect was blocked by both the specific beta 1 blocker bisoprolol and the peptide P0-beta. These results unambiguously prove that T. cruzi is able to induce a functional autoimmune response against the cardiovascular human beta 1-adrenergic receptor through a molecular mimicry mechanism.


2005 ◽  
Vol 90 (7) ◽  
pp. 4191-4197 ◽  
Author(s):  
Bo Liu ◽  
Stephen J. Hill ◽  
Raheela N. Khan

Abstract Context: Little is known about the crosstalk between the decidua and myometrium in relation to human labor. The hormone oxytocin (OT) is considered to be a key mediator of uterine contractility during parturition, exerting some of its effects through calcium channels. Objective: The objective was to characterize the effect of OT on the T-type calcium channel in human decidual stromal cells before and after the onset of labor. Design: The nystatin-perforated patch-clamp technique was used to record inward T-type calcium current (ICa(T)) from acutely dispersed decidual stromal cells obtained from women at either elective cesarean section [CS (nonlabor)] or after normal spontaneous vaginal delivery [SVD (labor)]. Setting: These studies took place at the University of Nottingham Medical School. Results: I Ca(T) of both SVD and CS cells were blocked by nickel (IC50 of 5.6 μm) and cobalt chloride (1 mm) but unaffected by nifedipine (10 μm). OT (1 nm to 3.5 μm) inhibited ICa(T) of SVD cells in a concentration-dependent manner, with a maximal inhibition of 79.0% compared with 26.2% in decidual cells of the CS group. OT-evoked reduction of ICa(T) was prevented by preincubation with the OT antagonist L371,257 in the SVD but not CS group. OT, in a concentration-dependent manner, displaced the steady-state inactivation curve for ICa(T) to the left in the SVD group with no significant effect on curves of the CS group. Conclusion: Inhibition of ICa(T) by OT in decidual cells obtained during labor may signify important functional remodeling of uterine signaling during this period.


1995 ◽  
Vol 73 (10) ◽  
pp. 1475-1484 ◽  
Author(s):  
Hideaki Sada ◽  
Takashi Ban ◽  
Takeshi Fujita ◽  
Yoshio Ebina ◽  
Nicholas Sperelakis

To assess developmental changes in kinetic properties of the cardiac sodium current, whole-cell voltage-clamp experiments were conducted using 3-, 10-, and 17-day-old embryonic chick ventricular heart cells. Experimental data were quantified according to the Hodgkin–Huxley model. While the Na current density, as examined by the maximal conductance, drastically increased (six- to seven-fold) with development, other current–voltage parameters remained unchanged. Whereas the activation time constant and the steady-state activation characteristics were comparable among the three age groups, the voltage dependence of the inactivation time constant and the steady-state inactivation underwent a shift in the voltage dependence toward negative potentials during embryonic development. Consequently, the steady-state (window current) conductance, which was sufficient to induce automatic activity in the young embryos, was progressively reduced with age.Key words: cardiac electrophysiology, whole-cell voltage-clamp experiments, fast Na currents, heart, development, developmental changes.


Sign in / Sign up

Export Citation Format

Share Document