Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach

2011 ◽  
Vol 89 (5) ◽  
pp. 365-382 ◽  
Author(s):  
Pardeep Sidhu ◽  
Henry T. Peng ◽  
Bob Cheung ◽  
Andrea Edginton

Under extreme conditions of heat exposure and exercise stress, the human body undergoes major physiological changes. Perturbations in organ blood flows, gastrointestinal properties, and vascular physiology may impact the body’s ability to absorb, distribute, and eliminate drugs. Clinical studies on the effect of these stressors on drug pharmacokinetics demonstrate that the likelihood of pharmacokinetic alteration is dependent on drug properties and the intensity of the stressor. The objectives of this study were to use literature data to quantify the correlation between exercise and heat exposure intensity to changing physiological parameters and further, to use this information for the parameterization of a whole-body, physiologically based pharmacokinetic model for the purposes of determining those drug properties most likely to demonstrate altered drug pharmacokinetics under stress. Cardiac output and most organ blood flows were correlated with heart rate using regression analysis. Other altered parameters included hematocrit and intravascular albumin concentration. Pharmacokinetic simulations of intravenous and oral administration of hypothetical drugs with either a low or high value of lipophilicity, unbound fraction in plasma, and unbound intrinsic hepatic clearance demonstrated that the area under the curve of those drugs with a high unbound intrinsic clearance was most affected (up to a 130% increase) following intravenous administration, whereas following oral administration, pharmacokinetic changes were smaller (<40% increase in area under the curve) for all hypothetical compounds. A midazolam physiologically based pharmacokinetic model was also used to demonstrate that simulated changes in pharmacokinetic parameters under exercise and heat stress were generally consistent with those reported in the literature.

Planta Medica ◽  
2020 ◽  
Vol 86 (04) ◽  
pp. 276-283 ◽  
Author(s):  
Frederico Severino Martins ◽  
Sherwin K.B. Sy ◽  
Maria José Vieira Fonseca ◽  
Osvaldo de Freitas

AbstractThe treatment of vitiligo includes the combination of psoralens and ultraviolet type A exposure. Psoralens belong to a group of natural furanocoumarins that cause the skin to become sensitive temporarily to ultraviolet type A. The aim of this study was to develop a physiologically based pharmacokinetic model of 5-MOP from Brosimum gaudichaudii to support psoralen and ultraviolet type A therapy. A study of rats was used to establish and validate rat tissue distribution. The same chemical-specific parameters used in the rat model were also employed in the human model to project human pharmacokinetics. The highest exposures in the rats were in the brain and skin. Following a single dose of 1.2 mg/kg 5-MOP in humans, the model predicted a maximum concentration of 20 ng/mL and an area under the curve of 125 ng.h/mL, matching clinical results. The half-maximum melanogenesis concentrations in B16F10 cells were 29.5, 18.5, 11.5, and 6.5 ng/mL for synthetic 5-MOP, synthetic 5-MOP with ultraviolet type A, B. gaudichaudii alone, and B. gaudichaudii plus ultraviolet type A, respectively. Physiologically based pharmacokinetic model prediction in humans supported a once-every-two-day regimen for optimal melanin production. This type of framework can be applied to support strategies for dose selection and to investigate the impact of drugs on melanocyte recovery.


Sign in / Sign up

Export Citation Format

Share Document