Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase

2012 ◽  
Vol 90 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Lindsei K. Sarna ◽  
Nan Wu ◽  
Pengqi Wang ◽  
Sun-Young Hwang ◽  
Yaw L. Siow ◽  
...  

Diets high in saturated fat and cholesterol facilitate weight gain, a predisposing factor that contributes to the onset of obesity and metabolic disorders. Hepatic oxidative stress is commonly reported in various animal models of obesity and has been associated with enhanced expression of NADPH oxidase. We have previously reported several antioxidant mechanisms through which folic acid confers protection during hyperhomocysteinemia-induced oxidative stress. The objective of the present study was to investigate whether folic acid supplementation ameliorates high-fat diet induced oxidative stress in the liver, and to identify the underlying mechanisms. Male C57BL/6J mice were fed a control diet, a high-fat diet, or a high-fat diet supplemented with folic acid for 12 weeks. A high-fat diet led to increased body mass, hepatic lipid peroxidation, and liver injury. There was a significant increase in hepatic NADPH oxidase activity, which was associated with enhanced expression of several NADPH-oxidase subunits. Folic acid supplementation had a protective effect against high-fat diet induced hepatic oxidative stress and liver injury. Further analysis revealed that the antioxidant effect of folic acid was attributed, in part, to transcriptional regulation of NADPH oxidase. These results suggested that folic acid supplementation may be hepatoprotective from liver injury associated with a high-fat diet.

2015 ◽  
Vol 309 (10) ◽  
pp. R1215-R1225 ◽  
Author(s):  
Victoria Sid ◽  
Nan Wu ◽  
Lindsei K. Sarna ◽  
Yaw L. Siow ◽  
James D. House ◽  
...  

AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fed mice. The aim of the present study was to investigate the effect of folic acid on hepatic AMPK during high-fat diet feeding and the mechanisms involved. Male C57BL/6J mice were fed a control diet (10% kcal fat), a high-fat diet (60% kcal fat), or a high-fat diet supplemented with folic acid (26 mg/kg diet) for 5 wk. Mice fed a high-fat diet exhibited hyperglycemia, hepatic cholesterol accumulation, and reduced hepatic AMPK phosphorylation. Folic acid supplementation restored AMPK phosphorylation (activation) and reduced blood glucose and hepatic cholesterol levels. Activation of AMPK by folic acid was mediated through an elevation of its allosteric activator AMP and activation of its upstream kinase, namely, liver kinase B1 (LKB1) in the liver. Consistent with in vivo findings, 5-methyltetrahydrofolate (bioactive form of folate) restored phosphorylation (activation) of both AMPK and LKB1 in palmitic acid-treated HepG2 cells. Activation of AMPK by folic acid might be responsible for AMPK-dependent phosphorylation of HMG-CoA reductase, leading to reduced hepatic cholesterol synthesis during high-fat diet feeding. These results suggest that folic acid supplementation may improve cholesterol and glucose metabolism by restoration of AMPK activation in the liver.


Lipids ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 709-716 ◽  
Author(s):  
Victoria Sid ◽  
Yue Shang ◽  
Yaw L. Siow ◽  
Susara Madduma Hewage ◽  
James D. House ◽  
...  

2011 ◽  
Vol 300 (1) ◽  
pp. F189-F198 ◽  
Author(s):  
Sun-Young Hwang ◽  
Yaw L. Siow ◽  
Kathy K. W. Au-Yeung ◽  
James House ◽  
Karmin O

Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) levels, is a metabolic disease. It is a common clinical finding in patients with chronic kidney diseases and occurs almost uniformly in patients with end-stage renal disease. Hyperhomocysteinemia is also a risk factor for cardiovascular disease. Our recent studies indicate that hyperhomocysteinemia can lead to renal injury by inducing oxidative stress. Oxidative stress is one of the important mechanisms contributing to Hcy-induced tissue injury. Folic acid supplementation is regarded as a promising approach for prevention and treatment of cardiovascular disease associated with hyperhomocysteinemia due to its Hcy-lowering effect. However, its effect on the kidney is not clear. The aim of this study was to examine the effect of folic acid supplementation on Hcy-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the kidney during hyperhomocysteinemia. Hyperhomocysteinemia was induced in male Sprague-Dawley rats fed a high-methionine diet for 12 wk with or without folic acid supplementation. A group of rats fed a regular diet was used as control. There was a significant increase in levels of superoxide anions and lipid peroxides in kidneys isolated from hyperhomocysteinemic rats. Activation of NADPH oxidase was responsible for hyperhomocysteinemia-induced oxidative stress in the kidney. Folic acid supplementation effectively antagonized hyperhomocysteinemia-induced oxidative stress via its Hcy-lowering and Hcy-independent effect. In vitro study also showed that 5-methyltetrahydrofolate, an active form of folate, effectively reduced Hcy-induced superoxide anion production via NADPH oxidase. Xanthine oxidase activity was increased and superoxide dismutase (SOD) activity was decreased in the kidney of hyperhomocysteinemic rats, which might also contribute to an elevation of superoxide anion level in the kidney. Folic acid supplementation attenuated xanthine oxidase activity and restored SOD activity in the kidney of hyperhomocysteinemic rats. These results suggest that folic acid supplementation may offer renal protective effect against oxidative stress.


2021 ◽  
Author(s):  
Jingda Li ◽  
Tianqi Wang ◽  
Panpan Liu ◽  
Fuyuan Yang ◽  
Xudong Wang ◽  
...  

Hesperetin as a major bioflavonoid in citrus fruits improves NAFLD by suppressing hepatic oxidative stress and inflammation.


2016 ◽  
Vol 50 (3) ◽  
pp. 314-327 ◽  
Author(s):  
Bin Feng ◽  
Ran Meng ◽  
Bin Huang ◽  
Shanmei Shen ◽  
Yan Bi ◽  
...  

2015 ◽  
Vol 35 (8) ◽  
pp. 803-806 ◽  
Author(s):  
E. Lymperaki ◽  
A. Tsikopoulos ◽  
K. Makedou ◽  
E. Paliogianni ◽  
L. Kiriazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document