ESTIMATION OF CORTICOSTEROIDS BY THE REDUCTION OF FERRICYANIDE

1959 ◽  
Vol 37 (1) ◽  
pp. 391-398 ◽  
Author(s):  
N. R. Stephenson

A procedure based on a modification of Folin's micromethod for blood sugar (1, 2) was used to investigate the reducing activity of various corticosteroids. The ferrocyanide produced as a result of the reduction of ferricyanide in alkaline solution was measured photometrically as Prussian blue. With a filter transmitting light at 620 mμ, the relation between the absorbance of the chromogen and the amount of the reducing steroid obeyed Beer's law over the range from 0.005 to 0.050 mg. The oxygen function at C-3 accounted for most of the reducing power of the non-alpha ketolic steroids studied. An oxygen function at C-11 did not affect significantly the reduction of ferricyanide by 17-desoxycorticosteroids. Although the presence of a hydroxyl at C-17 depressed the reducing activity of the alpha-ketol side chain, a fluorine at C-9 and an hydroxyl at C-11 appeared to overcome this inhibiting effect. Evidence was obtained to suggest that a C-16 hydroxyl group was able to increase the reducing action of the alpha-ketolic side chain. Esterification of the C-21 hydroxyl influenced the reduction of ferricyanide only when interference with hydrolysis of the ester in the alkaline medium was experienced.

1959 ◽  
Vol 37 (3) ◽  
pp. 391-398 ◽  
Author(s):  
N. R. Stephenson

A procedure based on a modification of Folin's micromethod for blood sugar (1, 2) was used to investigate the reducing activity of various corticosteroids. The ferrocyanide produced as a result of the reduction of ferricyanide in alkaline solution was measured photometrically as Prussian blue. With a filter transmitting light at 620 mμ, the relation between the absorbance of the chromogen and the amount of the reducing steroid obeyed Beer's law over the range from 0.005 to 0.050 mg. The oxygen function at C-3 accounted for most of the reducing power of the non-alpha ketolic steroids studied. An oxygen function at C-11 did not affect significantly the reduction of ferricyanide by 17-desoxycorticosteroids. Although the presence of a hydroxyl at C-17 depressed the reducing activity of the alpha-ketol side chain, a fluorine at C-9 and an hydroxyl at C-11 appeared to overcome this inhibiting effect. Evidence was obtained to suggest that a C-16 hydroxyl group was able to increase the reducing action of the alpha-ketolic side chain. Esterification of the C-21 hydroxyl influenced the reduction of ferricyanide only when interference with hydrolysis of the ester in the alkaline medium was experienced.


1965 ◽  
Vol 18 (9) ◽  
pp. 1451 ◽  
Author(s):  
RA Eade ◽  
LP Rossler ◽  
HV Simes ◽  
JJH Simes

Ebelin lactone, formed by hydrolysis of a saponin, is a carbotricyclic triterpene with a novel carbon skeleton. Chemical evidence leading to the structure (I) for ebelin lactone is now presented in detail. Ebelin lactone, C30H46O3, possesses a secondary, equatorial hydroxyl group shown to be the 3β-hydroxyl group located in a typical triterpene ring A (III). Spectroscopic and chemical results show that the remaining two oxygen atoms are present in a γ-lactone ring (XIII). The side- chain has been subjected to oxidative degradations; an examination of the volatile fragments, and the isolation and characterization of the non-volatile C22 octanor compounds indicate that the side-chain has one of four possible structures (XVII). Structure (XVIII) is preferred on biogenetic grounds. The side-chain is attached equatorially; the conjugated triene system is allotted the trans arrangement of the double bonds on spectroscopic evidence. The biogenesis of ebelin lactone is discussed.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Brandy N. Curtis ◽  
Kali A. Smolen ◽  
Sara J. Barlow ◽  
Emilia Caselli ◽  
Fabio Prati ◽  
...  

ABSTRACT Extended-spectrum class C β-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by β-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki, 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.


2009 ◽  
Vol 62 (9) ◽  
pp. 988 ◽  
Author(s):  
Martin J. Stoermer ◽  
Donmienne Leung ◽  
Paul R. Young ◽  
David P. Fairlie

Serine protease enzymes use a serine hydroxyl group to catalyze hydrolysis of polypeptides. They are important in immunity, blood clotting, digestion, and as therapeutic or diagnostic targets for cancer, diabetes, stroke, inflammatory diseases, and viral infections. Their inhibitors typically possess an electrophile that reacts with the nucleophilic hydroxyl group of the catalytic serine. The α-ketoamide is a valuable electrophile in inhibitor discovery as it permits synthetic elaboration to both sides, unlike other electrophiles. Here we show that an α-ketoamide is unstable above pH 7 when adjacent to the C-terminus of arginine – the guanidine side chain condenses with the α-ketoamide at the keto group rather than the amide carbonyl to form a six-membered hemiaminal rather than a seven-membered lactam.


2000 ◽  
Vol 65 (11) ◽  
pp. 1726-1736 ◽  
Author(s):  
Miroslav Ledvina ◽  
Radka Pavelová ◽  
Anna Rohlenová ◽  
Jan Ježek ◽  
David Šaman

Carba analogs of normuramic acid, i.e., 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid derivatives (nitrile or esters) 3a-3c were prepared by addition of radicals generated from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[(methylsulfanyl)thiocarbonyl]- (2a) or -3-O-(phenoxythiocarbonyl)-α-D-glucopyranoside (2b) with Bu3SnH to acrylonitrile or acryl esters. Alkaline hydrolysis of ethyl ester 3c afforded 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid (5). Coupling of acid 5 with L-2-aminobutanoyl-D-isoglutamine benzyl ester trifluoroacetate and subsequent deprotection of the intermediate 6 furnished N-[3-(2-acetamido-2,3-dideoxy-α-D-glucopyranosid-3-yl)propanoyl]-L-2-aminobutanoyl-D-isoglutamine (7).


2015 ◽  
Vol 1 (7) ◽  
pp. e1500263 ◽  
Author(s):  
Akihiko Nakamura ◽  
Takuya Ishida ◽  
Katsuhiro Kusaka ◽  
Taro Yamada ◽  
Shinya Fushinobu ◽  
...  

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the “Newton’s cradle”–like proton relay pathway of the catalytic cycle. Amide–imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.


1979 ◽  
Vol 90 (3) ◽  
pp. 490-504 ◽  
Author(s):  
D. R. Rovner ◽  
J. W. Conn ◽  
E. L. Cohen ◽  
F. G. Berlinger ◽  
D. C. Kern ◽  
...  

ABSTRACT We have studied the hormonal secretion and excretion patterns in a patient with the XX type of 17α-hydroxylase deficiency. In the untreated state, the patient's urine contained only those steroids which do not require 17-hydroxylation in their biosynthesis. Aldosterone was not produced in the patient and the metabolic product of its immediate precursor, 18-hydroxy-11-dehydro-tetrahydrocorticosterone, was excreted in markedly elevated amounts. This apparent complete block in 18 oxidation was reversible upon long-term ACTH suppression within 27 days. Direct in vitro incubation of the patient's adrenal gland removed at operation demonstrated, 1) the complete lack of 17α-hydroxylase activity, 2) the functional block in the ability to oxidize the hydroxyl group at the 18 methyl side chain. The addition of physiological concentrations of angiotensin to the incubation medium further showed, 3) angiotensin mildly stimulated the entire aldosterone biosynthetic pathway, 4) angiotensin directly stimulated the conversion of 18-hydroxycorticosterone to aldosterone. We propose that in this patient, 17-hydroxylase deficiency produced a decreased plasma concentration of cortisol, followed by stimulation of deoxycorticosterone production by ACTH. The resultant increase in extracellular fluid volume suppressed plasma renin activity. This resulted in a low plasma concentration of angiotensin II which directly suppressed oxidation of 18-hydroxycorticosterone to aldosterone. This defect has been called corticosterone methyl oxidase defect type 2.


Author(s):  
Olga V. Moroz ◽  
Lukasz F. Sobala ◽  
Elena Blagova ◽  
Travis Coyle ◽  
Wei Peng ◽  
...  

The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a K d of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.


Sign in / Sign up

Export Citation Format

Share Document