Base-Sensitivity of Arginine Alpha-Ketoamide Inhibitors of Serine Proteases

2009 ◽  
Vol 62 (9) ◽  
pp. 988 ◽  
Author(s):  
Martin J. Stoermer ◽  
Donmienne Leung ◽  
Paul R. Young ◽  
David P. Fairlie

Serine protease enzymes use a serine hydroxyl group to catalyze hydrolysis of polypeptides. They are important in immunity, blood clotting, digestion, and as therapeutic or diagnostic targets for cancer, diabetes, stroke, inflammatory diseases, and viral infections. Their inhibitors typically possess an electrophile that reacts with the nucleophilic hydroxyl group of the catalytic serine. The α-ketoamide is a valuable electrophile in inhibitor discovery as it permits synthetic elaboration to both sides, unlike other electrophiles. Here we show that an α-ketoamide is unstable above pH 7 when adjacent to the C-terminus of arginine – the guanidine side chain condenses with the α-ketoamide at the keto group rather than the amide carbonyl to form a six-membered hemiaminal rather than a seven-membered lactam.

1959 ◽  
Vol 37 (1) ◽  
pp. 391-398 ◽  
Author(s):  
N. R. Stephenson

A procedure based on a modification of Folin's micromethod for blood sugar (1, 2) was used to investigate the reducing activity of various corticosteroids. The ferrocyanide produced as a result of the reduction of ferricyanide in alkaline solution was measured photometrically as Prussian blue. With a filter transmitting light at 620 mμ, the relation between the absorbance of the chromogen and the amount of the reducing steroid obeyed Beer's law over the range from 0.005 to 0.050 mg. The oxygen function at C-3 accounted for most of the reducing power of the non-alpha ketolic steroids studied. An oxygen function at C-11 did not affect significantly the reduction of ferricyanide by 17-desoxycorticosteroids. Although the presence of a hydroxyl at C-17 depressed the reducing activity of the alpha-ketol side chain, a fluorine at C-9 and an hydroxyl at C-11 appeared to overcome this inhibiting effect. Evidence was obtained to suggest that a C-16 hydroxyl group was able to increase the reducing action of the alpha-ketolic side chain. Esterification of the C-21 hydroxyl influenced the reduction of ferricyanide only when interference with hydrolysis of the ester in the alkaline medium was experienced.


1959 ◽  
Vol 37 (3) ◽  
pp. 391-398 ◽  
Author(s):  
N. R. Stephenson

A procedure based on a modification of Folin's micromethod for blood sugar (1, 2) was used to investigate the reducing activity of various corticosteroids. The ferrocyanide produced as a result of the reduction of ferricyanide in alkaline solution was measured photometrically as Prussian blue. With a filter transmitting light at 620 mμ, the relation between the absorbance of the chromogen and the amount of the reducing steroid obeyed Beer's law over the range from 0.005 to 0.050 mg. The oxygen function at C-3 accounted for most of the reducing power of the non-alpha ketolic steroids studied. An oxygen function at C-11 did not affect significantly the reduction of ferricyanide by 17-desoxycorticosteroids. Although the presence of a hydroxyl at C-17 depressed the reducing activity of the alpha-ketol side chain, a fluorine at C-9 and an hydroxyl at C-11 appeared to overcome this inhibiting effect. Evidence was obtained to suggest that a C-16 hydroxyl group was able to increase the reducing action of the alpha-ketolic side chain. Esterification of the C-21 hydroxyl influenced the reduction of ferricyanide only when interference with hydrolysis of the ester in the alkaline medium was experienced.


1965 ◽  
Vol 18 (9) ◽  
pp. 1451 ◽  
Author(s):  
RA Eade ◽  
LP Rossler ◽  
HV Simes ◽  
JJH Simes

Ebelin lactone, formed by hydrolysis of a saponin, is a carbotricyclic triterpene with a novel carbon skeleton. Chemical evidence leading to the structure (I) for ebelin lactone is now presented in detail. Ebelin lactone, C30H46O3, possesses a secondary, equatorial hydroxyl group shown to be the 3β-hydroxyl group located in a typical triterpene ring A (III). Spectroscopic and chemical results show that the remaining two oxygen atoms are present in a γ-lactone ring (XIII). The side- chain has been subjected to oxidative degradations; an examination of the volatile fragments, and the isolation and characterization of the non-volatile C22 octanor compounds indicate that the side-chain has one of four possible structures (XVII). Structure (XVIII) is preferred on biogenetic grounds. The side-chain is attached equatorially; the conjugated triene system is allotted the trans arrangement of the double bonds on spectroscopic evidence. The biogenesis of ebelin lactone is discussed.


1978 ◽  
Vol 56 (5) ◽  
pp. 315-318 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The kinetic parameters Km and kcat/Km have been determined for the carboxypeptidase B (CPB, EC 3.4.12.3) catalyzed hydrolysis of benzoylglycyl-DL-homolysine and benzoylglycyl-L-homoarginine. Plots of these data and those for Bz-Gly-Orn and Bz-Gly-Arg (Wolff, E. C., Schirmer, E. W. &Folk, J. E. (1962) J. Biol. Chem. 237, 3094–3099) and Bz-Gly-Lys versus the length of the side chain of the basic amino acid indicate that unlike trypsin (EC 3.4.21.4) (Seely, J. H. &Benoiton, N. L. (1970) Can. J. Biochem. 48, 1122–1131) CPB has a higher binding affinity for a guanidino group than for an amino group at the side chain of the substrate C-terminus. On the other hand, CPB is similar to trypsin (ibid) in that the best substrate would have a side chain length between those of lysine and arginine.Studies with Bz-MeGly-Lys and Bz-Ala-Lys showed that the former is very slowly hydrolyzed by CPB but that the latter is a good substrate, with a high affinity for the enzyme, indicative of considerable participation of the Cα-methyl group of alanine in the binding of the substrate to the enzyme.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Brandy N. Curtis ◽  
Kali A. Smolen ◽  
Sara J. Barlow ◽  
Emilia Caselli ◽  
Fabio Prati ◽  
...  

ABSTRACT Extended-spectrum class C β-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by β-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki, 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.


2000 ◽  
Vol 65 (11) ◽  
pp. 1726-1736 ◽  
Author(s):  
Miroslav Ledvina ◽  
Radka Pavelová ◽  
Anna Rohlenová ◽  
Jan Ježek ◽  
David Šaman

Carba analogs of normuramic acid, i.e., 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid derivatives (nitrile or esters) 3a-3c were prepared by addition of radicals generated from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[(methylsulfanyl)thiocarbonyl]- (2a) or -3-O-(phenoxythiocarbonyl)-α-D-glucopyranoside (2b) with Bu3SnH to acrylonitrile or acryl esters. Alkaline hydrolysis of ethyl ester 3c afforded 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid (5). Coupling of acid 5 with L-2-aminobutanoyl-D-isoglutamine benzyl ester trifluoroacetate and subsequent deprotection of the intermediate 6 furnished N-[3-(2-acetamido-2,3-dideoxy-α-D-glucopyranosid-3-yl)propanoyl]-L-2-aminobutanoyl-D-isoglutamine (7).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Duboux ◽  
M. Golliard ◽  
J. A. Muller ◽  
G. Bergonzelli ◽  
C. J. Bolten ◽  
...  

AbstractThe Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that Bifidobacterium longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna C. Aschenbrenner ◽  
◽  
Maria Mouktaroudi ◽  
Benjamin Krämer ◽  
Marie Oestreich ◽  
...  

Abstract Background The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. Methods In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. Results Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. Conclusions Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Author(s):  
Nils Stührwohldt ◽  
Eric Bühler ◽  
Margret Sauter ◽  
Andreas Schaller

Abstract Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7 and SBT3.8 were found to be up-regulated in response to osmotic stress. Stress symptoms were enhanced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the precursor of PSK1 (proPSK1) or SBT3.8 resulting in higher fresh weight and improved lateral root development in the transgenic compared to wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.


Sign in / Sign up

Export Citation Format

Share Document