THE DISSOCIATION OF α- AND β-LIPOVITELLIN IN AQUEOUS SOLUTION: PART I. EFFECT OF pH, TEMPERATURE, AND OTHER FACTORS

1962 ◽  
Vol 40 (1) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.


1962 ◽  
Vol 40 (3) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.



1984 ◽  
Vol 219 (2) ◽  
pp. 445-450 ◽  
Author(s):  
R Margalit ◽  
M Rotenberg

The dimerization equilibrium of deuteroporphyrin IX and of mesoporphyrin IX in aqueous solutions were studied by fluorimetric techniques over the 0.01-1 microM concentration range, where dimerization is the dominant aggregation process. Deuteroporphyrin IX was studied at several temperatures over the range 22-37 degrees C, and mesoporphyrin at 25 and 37 degrees C. The magnitudes determined for the dimerization equilibrium constants (25 degrees C, neutral pH, phosphate-buffered saline) are 2.3 × 10(6)M-1 and 5.4 × 10(6)M-1 for the deutero and meso derivatives respectively. The meso, deutero and haemato species tested show a similar temperature effect, namely dimerization decreasing with increasing temperature, indicating the involvement of a negative enthalpy change. Van't Hoff isochore of the dimerization constants determined for deuteroporphyrin IX was linear within the temperature range of 22-37 degrees C, allowing the calculation of the thermodynamic parameters. For deuteroporphyrin dimerization, those were found to be delta G0 = −36. 4kJ X mol-1; delta H0 = −46. 0kJ X mol-1 and delta S0 = −32.2J X K-1 X mol-1 (at neutral pH, 25 degrees C, phosphate-buffered saline), showing the process to be enthalpy-driven. Similar trends have been found for porphyrin species other than those studied here. Our data fit with a hypothesis giving a major role to the solvent in driving porphyrins to aggregate in aqueous solution. The magnitudes and directions of the energetic changes fit better with the expectation of the ‘ solvophobic force’ theory predicting enthalpy-driven association, than with the classic hydrophobic bonding, predicting the association to be entropy-driven.



Author(s):  
Pengpeng Chang ◽  
Xiangke Wang ◽  
Shaoming Yu ◽  
Wangsuo Wu


1986 ◽  
Vol 64 (6) ◽  
pp. 1267-1272 ◽  
Author(s):  
Oswald S. Tee ◽  
Jana Pika ◽  
M. Judith Kornblatt ◽  
Michael Trani

The kinetics of bromination of the title compound (1) have been measured in aqueous solutions of pH 0–6. The change in the order of reaction which occurs around pH 2.5 is explained by 1 reacting via its covalent hydrate, 3. Furthermore, there is sufficient 3 present at equilibrium that the kinetics of its equilibration with 1 were also measured. From these two studies the extent of covalent hydration of 1 is estimated to be 5%.Kinetic studies of the bromination of the dimethyl cation 5 and of its equilibration with the pseudobase 6 were also carried out for the purposes of comparison.The present results for 1, 3, 5, and 6 are compared to earlier results for 2-pyrimidinone and analogous derivatives.



1976 ◽  
Vol 153 (2) ◽  
pp. 279-285 ◽  
Author(s):  
S B Brown ◽  
M Shillcock ◽  
P Jones

An investigation of the behavior of protoporphyrin IX, deuteroporphyrin IX, haematoporphyrin IX and coproporphyrin III in aqueous solution revealed extensive and complex aggregation processes. Protoporphyrin appears to be highly aggregated under all conditions studied. At concentrations below 4 μM, aggregation of deutero-, haemato- and coproporphyrin is probably restricted to dimerization. At approx. 4muM each of these three porphyrins exhibits sharp changes in spectra consistent with a “micellization” process to form large aggregates of unknown size. This critical concentration increases with increasing temperature and pH, but is not very sensitive to variation in ionic strength. Temperature-jump kinetic studies on deuteroporphyrin also imply an initial dimerization process, the rate constants for which are comparable with those for various synthetic porphyrins, followed by a further extensive aggragation. The ability of a particular porphyrin to dimerize appears to parallel that of the corresponding iron(III) complexes (ferrihaems), although it is thought that ferrihaems do not exhibit further aggregation under these conditions.



1979 ◽  
Vol 57 (4) ◽  
pp. 454-457 ◽  
Author(s):  
J. Peter Guthrie

The free energy of formation of dimethyl sulfite in aqueous solution can be calculated as −91.45 ± 0.79 kcal/mol; this calculation required measurement of the solubility of dimethyl sulfite. From this value and the pKa of SO(OH)2, using previously reported methods, the free energy of formation of SO(OH)2 can be calculated to be −129.26 ± 0.89 kcal/mol. Comparison of this value with the value obtained from the free energy of formation of 'sulfurous acid' solutions, calculated from the free energy of formation of sulfite ion and the apparent pKa, values, permits evaluation of the free energy of covalent hydration of SO2 as 1.6 + 1.0 kcal/mol, in agreement with earlier qualitative spectroscopic observations. From the apparent pKa and the anticipated pKa values for the tautomers (SO(OH)2, pK1 = 2.3; HSO2(OH), pK1 = −2.6) it is possible to calculate the free energy change for tautomerization of SO(OH)2 to H—SO2(OH) as +4.5 ± 1.2 kcal/mol. All equilibrium constants required for Scheme 1, describing the species present in dilute aqueous solutions of SO2, have been calculated. In agreement with previous Raman studies the major tautomer of 'bisulfite ion' is calculated to be H—SO3−.



2019 ◽  
Vol 16 (4) ◽  
pp. 289 ◽  
Author(s):  
Montserrat Filella ◽  
Peter M. May

Environmental contextEquilibrium constants are required in many scientific disciplines such as biology, medicine, engineering, and in particular chemistry. Lack of reliable equilibrium constants for tellurium has restricted our understanding of its speciation and behaviour in the environment. This study presents a reliable set of equilibrium constants for tellurium, thereby providing a more coherent basis for future experimental investigations of the geochemistry, biochemistry and toxicology of this element. AbstractRelatively little information is available in the literature regarding the speciation and solubility of tellurium in aqueous solutions. The available thermodynamic data have been critically evaluated and entered into a thermodynamic database. The Joint Expert Speciation System suite of computer programs has been used to achieve thermodynamic consistency and provide a critically-selected set of equilibrium constants that can later be used for modelling purposes.



e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Cristóbal Lárez Velásquez ◽  
Joel Sánchez Albornoz ◽  
Enrique Millán Barrios

AbstractTwo salts of the biopolymer chitosan were prepared in aqueous medium by employing an excess of HCl or HNO3 in order to ensure neutralization of all NH2-chitosan groups. Chitosan salts were extensively dialyzed in dionised water and dried at 40 ºC until film formation. The films were characterized by thermogravimetry, FTIR and conductimetric tritration. QH+Cl− and QH+NO3− salts were viscosimetrically evaluated in free acid aqueous solutions in the presence of NaCl to control ionic strength of the medium. Unexpected high intrinsic viscosity values were obtained at low ionic strength when QH+NO3− salt were evaluated. Smidsrod´s approach was employed to estimate the stiffness parameter of both salts and B = 0.084 and 0.120 for QH+Cl− and QH+NO3−, respectively, were obtained.



1960 ◽  
Vol 38 (4) ◽  
pp. 567-575 ◽  
Author(s):  
D. Pouli ◽  
W. MacF. Smith

The kinetics of the reactions involved in the formation of the mono–fluoro complex of iron (III) in aqueous solutions have been examined spectrophotometrically at ionic strength 0.5 and over the temperature interval 0.1 to 12.1 °C. The results are interpretable on the assumption that the following two reactions contribute significantly to the rate Fe+++ + F− = FeF++ and Fe+++ + HF = FeF++ + H+, the former having a heat of activation of 22.8 ± 2.5 kcal mole−1 and an entropy of activation of 35 ± 9 cal deg−1 mole−1, the latter having a heat of activation of 8.7 ± 0.7 kcal mole−1 and an entropy of activation of −24.5 ± 3 cal deg−1 mole−1.



Sign in / Sign up

Export Citation Format

Share Document