scholarly journals Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution

1976 ◽  
Vol 153 (2) ◽  
pp. 279-285 ◽  
Author(s):  
S B Brown ◽  
M Shillcock ◽  
P Jones

An investigation of the behavior of protoporphyrin IX, deuteroporphyrin IX, haematoporphyrin IX and coproporphyrin III in aqueous solution revealed extensive and complex aggregation processes. Protoporphyrin appears to be highly aggregated under all conditions studied. At concentrations below 4 μM, aggregation of deutero-, haemato- and coproporphyrin is probably restricted to dimerization. At approx. 4muM each of these three porphyrins exhibits sharp changes in spectra consistent with a “micellization” process to form large aggregates of unknown size. This critical concentration increases with increasing temperature and pH, but is not very sensitive to variation in ionic strength. Temperature-jump kinetic studies on deuteroporphyrin also imply an initial dimerization process, the rate constants for which are comparable with those for various synthetic porphyrins, followed by a further extensive aggragation. The ability of a particular porphyrin to dimerize appears to parallel that of the corresponding iron(III) complexes (ferrihaems), although it is thought that ferrihaems do not exhibit further aggregation under these conditions.

1962 ◽  
Vol 40 (3) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.


1972 ◽  
Vol 50 (2) ◽  
pp. 194-200 ◽  
Author(s):  
R. N. Pandey ◽  
W. MacF. Smith

The kinetics and equilibria involved in the formation of monoacetatoiron(III) from iron(III) in aqueous solution has been investigated at ionic strength 0.50 M and temperatures ranging from 5.2 to 25 °C for kinetic studies and 5.2 to 41 °C for equilibria. The results support the view that the mechanism of the acid independent reaction involves the reactants FeOH2+ and CH3COOH in an interchange dissociative (Id) mechanism with ΔH≠ = 11.1 ± 2.2 kcal mol−1. The nature of the acid dependent reactions remains unresolved.


1962 ◽  
Vol 40 (1) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3659
Author(s):  
Nouf Faisal Alharby ◽  
Ruwayda S. Almutairi ◽  
Nadia A. Mohamed

The chemical cross-linking of carboxymethyl chitosan (O-CM-chitosan), as a method for its modification, was performed using trimellitic anhydride isothiocyanate to obtain novel cross-linked O-CM-chitosan hydrogel. Its structure was proven using FTIR, XRD and SEM. Its adsorption capacity for the removal of Methylene Blue (MB) dye from aqueous solution was studied. The effects of different factors on the adsorption process, such as the pH, temperature and concentration of the dye, in addition to applications of the kinetic studies of the adsorption process, adsorption isotherm and thermodynamic parameters, were studied. It was found that the amount of adsorbed MB dye increases with increasing temperature. A significant increase was obtained in the adsorption capacities and removal percentage of MB dye with increasing pH values. An increase in the initial dye concentration increases the adsorption capacities, and decreases the removal percentage. It was found that the pseudo-second-order mechanism is predominant, and the overall rate of the dye adsorption process appears to be controlled by more than one step. The Langmuir model showed high applicability for the adsorption of MB dye onto O-CM-chitosan hydrogel. The value of the activation energy (Ea) is 27.15 kJ mol−1 and the thermodynamic parameters were evaluated. The regeneration and reuse of the investigated adsorbent was investigated.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 148
Author(s):  
Hirokazu Fukumoto ◽  
Kazuhiko Ishihara ◽  
Shin-Ichi Yusa

A mixed aqueous solution of hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(acrylic acid) (PAAc) becomes cloudy under acidic conditions at room temperature. The pendant carboxylic acid groups in PAAc form hydrogen bonds with the ester and phosphate groups in PMPC. While the polymers aggregate under acidic conditions, neither one associate under basic conditions because of the deprotonation of the pendant carboxy groups in PAAc. We observed that the interpolymer complex formed from PMPC, and PAAc was dissociated in aqueous solutions with increasing temperature, which is an upper critical solution temperature behavior. With increasing temperature, the molecular motion increased to dissociate the interpolymer complex. The phase transition temperature increased with increasing polymer and salt concentrations, and with decreasing pH.


2003 ◽  
Vol 07 (03) ◽  
pp. 139-146 ◽  
Author(s):  
Peter Hambright ◽  
Ines Batinić-Haberle ◽  
Ivan Spasojević

The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.


2001 ◽  
Vol 79 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Catherine Morlay ◽  
Yolande Mouginot ◽  
Monique Cromer ◽  
Olivier Vittori

The possible removal of copper(II), nickel(II), or lead(II) by an insoluble crosslinked poly(acrylic acid) was investigated in dilute aqueous solution. The binding properties of the polymer were examined at pH = 6.0 or 4.0 with an ionic strength of the medium µ = 0.1 or 1.0 M (NaNO3) using differential pulse polarography as an investigation means. The highest complexing capacity of the polyacid was obtained with lead(II) at pH = 6.0 with µ = 0.1 M, 4.8 mmol Pb(II)/g polymer. The conditional stability constants of the complex species formed were determined using the method proposed by Ruzic assuming that only the 1:1 complex species was formed; for lead(II) at pH = 6.0 and µ = 0.1 M, log K' = 5.3 ± 0.2. It appeared that the binding properties of the polymer increased, depending on the metal ion, in the following order: Ni(II) < Cu(II) < Pb(II). The complexing capacity and log K' values decreased with the pH or with an increase of the ionic strength. These results were in agreement with the conclusions of our previous studies of the hydrosoluble linear analogues. Finally, with the insoluble polymer, the log K' values were comparable to those previously obtained with the linear analogue whereas the complexing capacity values expressed in mmol g-1 were slightly lower.Key words: insoluble crosslinked poly(acrylic acid), copper(II), nickel(II), and lead(II) complexation.


1980 ◽  
Vol 35 (9) ◽  
pp. 1096-1103 ◽  
Author(s):  
Matthias Kretschmer ◽  
Lutwin Labouvie ◽  
Karl-W. Quirin ◽  
Helmut Wiehn ◽  
Ludwig Heck

Acidity constants of ammine complexes of tetravalent platinum in aqueous solutions have been determined by a spectrophotometric method at very low ionic strengths and extrapolated to zero ionic strength. Temperature variations of pK-values (25 °C and 50 °C) yield thermodynamic parameters for two successive deprotonation steps of hexaammineplatinum(IV), pentaamminechloroplatinum(IV), and tris(ethylenediamine)pla- tinum(IV) complexes and for the deprotonation of pentaammineaquacobalt(III) ion.The enthalpy changes for the first and second steps are similar and range from 50 to 75 kJ/mole while for the aqua ligand of Co(III) 33 kJ/mole are found. The very large dif­ference in the entropy changes (about 70 to 80 J/K mole for the first step and -10 to + 20 J/K mole for the second step) is interpreted by a model of solvation change. The primary hydration sphere of strongly oriented and immobilized water dipoles around the highly charged complex cation is transformed to a hydrogen-bonded solvation sheath when the electric field of the complex is weakened upon release of the first proton.


1989 ◽  
Vol 109 (4) ◽  
pp. 1529-1535 ◽  
Author(s):  
J H Sinard ◽  
T D Pollard

At low ionic strength, Acanthamoeba myosin-II polymerizes into bipolar minifilaments, consisting of eight molecules, that scatter about three times as much light as monomers. With this light scattering assay, we show that the critical concentration for assembly in 50-mM KCl is less than 5 nM. Phosphorylation of the myosin heavy chain over the range of 0.7 to 3.7 P per molecule has no effect on its KCl dependent assembly properties: the structure of the filaments, the extent of assembly, and the critical concentration for assembly are the same. Sucrose at a concentration above a few percent inhibits polymerization. Millimolar concentrations of MgCl2 induce the lateral aggregation of fully formed minifilaments into thick filaments. Compared with dephosphorylated minifilaments, minifilaments of phosphorylated myosin have a lower tendency to aggregate laterally and require higher concentrations of MgCl2 for maximal light scattering. Acidic pH also induces lateral aggregation, whereas basic pH leads to depolymerization of the myosin-II minifilaments. Under polymerizing conditions, millimolar concentrations of ATP only slightly decrease the light scattering of either phosphorylated or dephosphorylated myosin-II. Barring further modulation of assembly by unknown proteins, both phosphorylated and dephosphorylated myosin-II are expected to be in the form of minifilaments under the ionic conditions existing within Acanthamoeba.


Sign in / Sign up

Export Citation Format

Share Document