The effect of nitrate ion on glycerol-treated frog skeletal muscle fibers

1970 ◽  
Vol 48 (12) ◽  
pp. 813-816 ◽  
Author(s):  
A. R. Luff ◽  
H. L. Atwood

The effect of nitrate ion on glycerol-treated, frog sartorius muscle fibers was investigated. Glycerol treatment alone (which has been shown to disrupt the transverse tubular system of the fiber) caused a considerable reduction in the time constant of the fiber membrane, but the effective resistance was virtually unchanged. Exposure of normal fibers to nitrate ion produced an increase in both the effective resistance and the time constant. Glycerol-treated fibers exposed to nitrate ion showed an increase in both the effective resistance and the time constant. The latter increased to a value in excess of that found in the normal fibers. The effect of nitrate ion on membrane electrical properties appeared to result from its action on the surface membrane as opposed to the transverse tubules.

1967 ◽  
Vol 50 (10) ◽  
pp. 2437-2458 ◽  
Author(s):  
W. H. Freygang ◽  
S. I. Rapoport ◽  
L. D. Peachey

Some of the linear electrical properties of frog sartorius muscle have been investigated in Ringer's fluid and in a Ringer fluid made hypertonic by the addition of sucrose or NaCl. Electrical constants were determined from measurements of the phase angle of the admittance of a fiber for an applied alternating current, from measurements of the voltage induced by an inward pulse of current, and from measurements of the conduction velocity of the action potential and the time constant of its foot. The dilation of the transverse tubular system induced by the sucrose hypertonic Ringer fluid was correlated with the change in the electrical constants. From this it is concluded that a two time constant equivalent circuit for the membrane, as proposed by Falk and Fatt, is in good agreement with our results. Both the area of the membrane of the transverse tubular system, and the capacity (ce) attributed to it, increased in the sucrose hypertonic Ringer fluid. The resistance re, which is in series with ce, did not fall when the transverse tubular system was dilated and probably is not located in that system.


1963 ◽  
Vol 16 (2) ◽  
pp. 297-313 ◽  
Author(s):  
Douglas A. Nelson ◽  
Ellis S. Benson

An electron microscopic study of rabbit and human myocardium provides further evidence of the existence of two distinct components of the sarcoplasmic reticulum. A thin-walled tubular system (termed longitudinal system) is arranged in anastomosing channels sur-surrounding each sarcomere and has transverse and possibly also longitudinal connections with the tubules of adjacent sarcomeres. A thick-walled tubular system traverses the myofiber transversely at the level of the Z lines of the myofibrils. The structure of these tubules very closely resembles that of deep sarcolemmal invaginations. Indeed, the membranes of the tubules appear to be continuous with the sarcolemma in favorable sections so that there seems to be an extension of the cell membrane and extracellular fluid to all depths of the myocardial fiber. Certain physiologic data which support this concept are discussed. The calculations of A. V. Hill comparing the kinetics of diffusion and the time-distance relationships between excitation and activation in frog sartorius muscle are reconsidered for cardiac muscle.


1968 ◽  
Vol 39 (2) ◽  
pp. 451-467 ◽  
Author(s):  
Brenda Eisenberg ◽  
Robert S. Eisenberg

Skeletal muscles which have been soaked for 1 hr in a glycerol-Ringer solution and then returned to normal Ringer solution have a disrupted sarcotubular system. The effect is associated with the return to Ringer's since muscles have normal fine structure while still in glycerol-Ringer's. Karnovsky's peroxidase method was found to be a very reliable marker of extracellular space, filling 98.5% of the tubules in normal muscle. It was interesting to note that only 84.1% of the sarcomeres in normal muscle have transverse tubules. The sarcotubular system was essentially absent from glycerol-treated muscle fibers, only 2 % of the tubular system remaining connected to the extracellular space; the intact remnants were stumps extending only a few micra into the fiber. Thus, glycerol-treated muscle fibers provide a preparation of skeletal muscle with little sarcotubular system. Since the sarcoplasmic reticulum is not destroyed and the sarcolemma and myofilaments are intact in this preparation, of the properties of the sarcolemma may thus be separated from those of the tubular system.


1967 ◽  
Vol 50 (9) ◽  
pp. 2145-2166 ◽  
Author(s):  
Haruo Sugi ◽  
Rikuo Ochi

Isolated single crayfish muscle fibers were locally activated by applying negative current pulses to a pipette whose tip was in contact with the fiber surface. The contraction initiated by a moderate depolarization spread inwards in a graded manner according to the magnitude and duration of depolarization. Increase of the depolarized area increased the distance of the inward spread for a given amount of depolarization. If a large area of the surface membrane was depolarized with a large pipette for a sufficiently long time, the contraction spread not only inwards, but further transversely passing through the center of the fiber. Successive brief depolarizations given at an appropriate interval could produce contraction more effectively for a given amount of total current than did a prolonged depolarization. On the other hand, the contraction initiated by a strong negative current was observed to spread around the whole perimeter but not through the center of the fiber. Each type of local contraction always spread along the striation pattern and not longitudinally. Possible mechanisms of these responses are discussed in connection with the transverse tubular system of the muscle fibers.


1969 ◽  
Vol 53 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Peter W. Gage ◽  
Robert S. Eisenberg

In frog sartorius muscle fibers in which the transverse tubular system has been disrupted by treatment with glycerol, action potentials which are unaccompanied by twitches can be recorded. These action potentials appear to be the same as those recorded in normal fibers except that the early afterpotential usually consists of a small hyperpolarization of short duration. After a train of action potentials no late afterpotential is seen even when the membrane potential is changed from the resting level. In fibers without transverse tubules hyperpolarizing currents do not produce a creep in potential. The interruption of excitation-contraction coupling, the changes in the afterpotentials, and the disappearance of creep are all attributed to the lack of a transverse tubular system.


1972 ◽  
Vol 59 (3) ◽  
pp. 347-359 ◽  
Author(s):  
P. C. Vaughan ◽  
J. N. Howell ◽  
R. S. Eisenberg

The capacitance of skeletal muscle fibers was measured by recording with one microelectrode the voltage produced by a rectangular pulse of current applied with another microelectrode. The ionic strength of the bathing solution was varied by isosmotic replacement of NaCl with sucrose, the [K] [Cl] product being held constant. The capacitance decreased with decreasing ionic strength, reaching a value of some 2 µF/cm2 in solutions of 30 mM ionic strength, and not decreasing further in solutions of 15 mM ionic strength. The capacitance of glycerol-treated fibers did not change with ionic strength and was also some 2 µF/cm2. It seems likely that lowering the ionic strength reduces the capacitance of the tubular system (defined as the charge stored in the tubular system), and that the 2 µF/cm2 which is insensitive to ionic strength is associated with the surface membrane. The tubular system is open to the external solution in low ionic strength solutions since peroxidase is able to diffuse into the lumen of the tubules. Twitches and action potentials were also recorded from fibers in low ionic strength solutions, even though the capacitance of the tubular system was very small in these solutions. This finding can be explained if there is an action potential—like mechanism in the tubular membrane.


1959 ◽  
Vol 196 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
S. Ochs ◽  
A. K. Mukherjee

Resting potentials of frog sartorius muscle fibers were taken with microelectrodes at different distances along the length of muscles before and after adding acetylcholine or choline. The mean membrane potential drop and scatter of the potentials recorded in the relatively nerve-free, and in the more densely innervated parts of the muscle, were similar. The loss of direct excitability to electrical and mechanical stimulation was correlated with the concentration of choline or acetylcholine presented. d-tubocurarine added beforehand protected against the depolarizing effect of acetylcholine and choline everywhere along the length of the muscle. A generalized action of acetylcholine and choline and also of d-tubocurarine all along the muscle fibers was inferred. This generalized action at higher concentrations of acetylcholine and choline is believed to be additional to a more specific end plate action.


Sign in / Sign up

Export Citation Format

Share Document