Effect of portacaval surgical anastomosis on systemic and splanchnic hemodynamics in portal hypertensive, cirrhotic rats

1988 ◽  
Vol 66 (12) ◽  
pp. 1493-1498 ◽  
Author(s):  
José M. Romeo ◽  
Antonio López-Farré ◽  
Vicente Martín-Paredero ◽  
José M. López-Novoa

The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4–Phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.

2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


1965 ◽  
Vol 208 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Francis L. Abel ◽  
John A. Waldhausen ◽  
Ewald E. Selkurt

Blood flow in the celiac and superior mesenteric arteries was measured in nine Macaca monkeys during a standardized hemorrhagic shock procedure. Simultaneous pressures were obtained from the hepatic vein, portal vein, and aorta. Each animal was bled rapidly to an arterial pressure of 40 mm Hg and maintained at this level until 30% of the bled volume had spontaneously reinfused. The remaining blood was then rapidly reinfused and the animal observed until death. The results show a lack of overshoot of venous pressure on reinfusion, grossly pale intestines with some microscopic congestive changes, and a decrease in splanchnic conductance throughout the postinfusion period. Hepatic venous pressure exceeded portal pressure in six of the nine animals during the period of hemorrhage. The results are interpreted as indicative of insignificant splanchnic pooling during hemorrhagic shock in this animal.


1986 ◽  
Vol 251 (5) ◽  
pp. G674-G677 ◽  
Author(s):  
J. N. Benoit ◽  
B. Zimmerman ◽  
A. J. Premen ◽  
V. L. Go ◽  
D. N. Granger

The role of glucagon as a blood-borne mediator of the hyperdynamic circulation associated with chronic portal venous hypertension was assessed in the rat portal vein stenosis model. Selective removal of pancreatic glucagon from the circulation was achieved by intravenous infusion of a highly specific glucagon antiserum. Blood flow to splanchnic organs, kidneys, and testicles was measured with radioactive microspheres, and the reference-sample method. Glucagon antiserum had no effect on blood flow in the gastrointestinal tract of sham-operated (control) rats. However, the antiserum produced a significant reduction in hepatic arterial blood flow in the control rats, suggesting that glucagon contributes significantly to the basal tone of hepatic arterioles. In portal hypertensive rats glucagon antiserum significantly reduced blood flow to the stomach (22%), duodenum (25%), jejunum (24%), ileum (26%), cecum (27%), and colon (26%). Portal venous blood flow was reduced by approximately 30%. The results of this study support the hypothesis that glucagon mediates a portion of the splanchnic hyperemia associated with chronic portal hypertension.


1993 ◽  
Vol 71 (6) ◽  
pp. 1238-1241 ◽  
Author(s):  
Peter S. Davie ◽  
Craig E. Franklin

Coronary arterial blood flow and pressure, intraventricular blood pressure, and ventral aortic blood velocity were measured in two anaesthetized school sharks (Galeorhinus australis) in order to examine the phasic relationships between these flows and pressures. Maximum instantaneous flow recorded in the ventral coronary artery was 0.37 mL∙min−1∙kg−1 body mass (estimated 0.63 mL∙min−1∙g−1 ventricular mass). The average mean coronary blood flow was estimated as 0.28 mL∙min−1∙g−1 ventricular mass during periods of high coronary blood flow. On average, 86% of coronary flow occurred during diastole. Coronary arterial flow began during the last quarter of ventricular systole. Coronary blood flow peaked when intraventricular pressure fell to just below zero immediately after ventricular systole. Coronary blood flow fell slightly as diastole continued and reflected the small fall in coronary arterial pressure. Coronary flow reversed briefly during isovolumic ventricular contraction. Increases in the proportion of the cardiac cycle occupied by ventricular diastole, which occur during hypoxic bradycardia, have the potential to more than double coronary blood flow provided coronary arterial pressure is maintained.


PEDIATRICS ◽  
1961 ◽  
Vol 27 (4) ◽  
pp. 627-635
Author(s):  
Forrest H. Adams ◽  
Nicholas Assali ◽  
Marjorie Cushman ◽  
Allan Westersten

Epinephrine and norepinephrine injected intravenously into pregnant ewes produced a prompt increase in maternal arterial pressure but a significant and sustained decrease in uterine arterial blood flow. Angiotensin injected intravenously into pregnant ewes produced a prompt increase in maternal arterial pressure (similar to epinephrine and norepinephrine) and an increase in uterine arterial blood flow. In the doses used, epinephrine, norepinephrine and angiotensin injected intravenously into pregnant ewes produced no significant observable effects on the arterial pressure and blood flow in the umbilical cord on heart rate in the fetus. Epinephrine and norepinephrine injected in the umbilical vein of lambs in utero produced a prompt and significant rise in umbilical arterial pressure and umbilical arterial flow only when large doses (five times effective adult doses/kg body weight) were used. Effective adult doses (kg body weight) injected into lambs in utero produced no significant change in arterial pressure or blood flow in the fetus. Angiotensin injected intravenously into lambs in utero produced no significant change in arterial pressure or blood flow in the umbilical cord. Vasoactive drugs injected into the mother on into the fetus did not appear to cross the placenta in either direction in physiologically effective amounts.


1995 ◽  
Vol 269 (1) ◽  
pp. G153-G159 ◽  
Author(s):  
L. V. Kuznetsova ◽  
D. Zhao ◽  
A. M. Wheatley

The long-term cardiovascular effects of orthotopic liver transplantation (OLT) were studied in conscious Lewis rats with a radioactive microsphere technique. Three months after OLT with an all-suture technique for graft revascularization (s-OLT), all hemodynamic parameters were similar to control. OLT with "cuffs" fitted to the portal vein and infrahepatic inferior vena cava (c-OLT) led to prominent hemodynamic disturbances including 1) hyperkinetic circulation with increased cardiac index (CI; 22%; P < 0.05) and decreased mean arterial pressure (15%; P < 0.05) and total peripheral resistance (TPR; 28%; P < 0.05); 2) a slight increase in portal pressure (11.8 +/- 0.9 vs. 9.3 +/- 1.7 mmHg in control) and marked portal-systemic shunting (51 +/- 11 vs. 0.05 +/- 0.04% in control; P < 0.05); 3) increased hepatic arterial blood flow (0.49 +/- 0.06 vs. 0.27 +/- 0.04 ml.min-1.g liver wt-1; P < 0.05); 4) splanchnic vasodilation with vascular resistance significantly (P < 0.05) lower in the liver, stomach, and large intestine; and 5) increased blood flow and decreased vascular resistance in the kidneys and heart. Ganglionic blockade with chlorisondamine (5 mg/kg body wt iv) indicated that the increase in CI seen in the c-OLT rats was probably sympathetically mediated, whereas the increase in renal blood flow was a reflection of the increase in CI. After ganglionic blocker administration, TPR and regional vascular resistances decreased to approximately the same extent in the control and c-OLT groups, indicating that vascular sympathetic tone was unchanged in the c-OLT rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1965 ◽  
Vol 209 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Ricardo Ferretti ◽  
Neil S. Cherniack ◽  
Guy Longobardo ◽  
O. Robert Levine ◽  
Eugene Morkin ◽  
...  

Rhythmic oscillations in systemic arterial blood pressure (Mayer waves) were produced in the dog by metabolic acidosis; hypoxia generally augmented the amplitude of the Mayer waves. When the Mayer waves exceeded 20 mm Hg in amplitude, they were associated with rhythmic fluctuations in pulmonary arterial pressure. The pulmonary arterial waves resembled the Mayer waves with respect to frequency and independence of the breathing pattern but were generally smaller in amplitude Measurements of instantaneous pulmonary arterial blood flow indicate that the rhythmic fluctuations in pulmonary arterial pressure represent the passive effects of fluctuations in pulmonary blood flow rather than fluctuations in pulmonary vasomotor activity. In turn, the swings in pulmonary arterial blood flow appear to originate in rhythmic variations in systemic vasomotor activity.


1975 ◽  
Vol 228 (2) ◽  
pp. 386-391 ◽  
Author(s):  
LA Hohnke

Arterial blood pressure (ABP) responses to graded hemorrhage and passive head-up tilt were studied in restrained, anesthetized, and unanesthetized iguanas. The ABP fell slowly in response to hemorrhage up to a critical deficit of 35 plus or minus 19% of the estimated blood volume; the rate of ABP fall then increased nearly 40-fold to continued hemorrhage. Increased heart rate and decreased femoral arterial blood flow accompanied progressive hemorrhage. Propranolol (2-3 mug/kg) did not appreciably alter arterial pressure-hemorrhage curves but hemorrhage-induced increases in heart rate were diminished nearly 50%. Atropine had little effect on either the blood pressure or heart rate changes induced by hemorrhage. During passive tilts of 0-90 degrees carotid arterial pressure fell 33% before returning to control levels (2 min). Heart rate increased and femoral arterial blood flow and central venous pressure fell in response to head-up tilts. It is concluded that hemorrhage and passive head-up tilting can induce reflex cardiovascular changes that assist ABP regulation in iguanas.


1973 ◽  
Vol 38 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Jiro Nakano ◽  
Alvin C. K. Chang ◽  
Robert G. Fisher

✓ The effects of intra-arterial (i.a.) or intravenous (i.v.) injection of prostaglandins E1, (PGE1), E2 (PGE2), A1 (PGA1), A2 (PGA2), and F2α (PGF2α) on the carotid circulation, intraocular pressure (IOP), and cerebrospinal fluid pressure (CSFP) in anesthetized dogs are reported. Direct i.a. injection of PGE1, PGE2, or PGA2 decreases the carotid vascular resistance whereas PGF2α increases it. The i.v. injection of PGE1, PGE2, and PGA2 increases heart rate, carotid arterial blood flow, IOP, and CSFP as systemic arterial pressure decreases, while the i.v. injection of PGF2α decreases all but the IOP. Both systemic arterial pressure and IOP increase during a single i.v. infusion and decrease during a continuous i.v. infusion of PGF2α. This suggests that the changes in IOP and CSFP by the prostaglandins are not only a direct effect but also reflect indirect influence on carotid arterial blood flow. During a continuous i.v. infusion of PGE1, PGE2, or PGA2, carotid arterial blood flow gradually decreases toward control values after its initial marked increase. It is concluded that a single i.a. or i.v. injection or a short i.v. (10 min) infusion of PGE1 or PGE2 may be more effective than a prolonged continuous i.v. infusion of PGE1 or PGE2 for alleviating cerebral vascular spasm.


1994 ◽  
Vol 76 (6) ◽  
pp. 2304-2309 ◽  
Author(s):  
S. I. Myers ◽  
R. Hernandez ◽  
T. A. Miller

The effect of anesthesia on splanchnic blood flow was examined during hemorrhagic shock and resuscitation. Sprague-Dawley rats were anesthetized with the inhalation anesthetic, methoxyflurane, or pentobarbital (65 mg/kg). Transonic Doppler flow probes were placed around the superior mesenteric artery (SMA) and the abdominal aorta, and the animals were subjected to acute hemorrhage (or sham) to 30 mmHg for 90 min followed by 30 min of resuscitation with shed blood (n = 6/group). At 90, 105, and 120 min, sham animals in both anesthetic groups showed comparable blood pressures with a 50% decrease in SMA and aortic blood flow. Acute hemorrhage decreased SMA blood flow by 94.5 +/- 0.01 and 86.0 +/- 2.8%, respectively, in the pentobarbital and methoxyflurane groups, with similar changes occurring in aortic blood flow. During resuscitation, arterial pressure remained significantly depressed and SMA blood flow decreased by 65% in the pentobarbital group, whereas blood pressure returned to control levels and SMA blood flow increased to 56% of control values (P < 0.001) in the methoxyflurane group. The findings indicate that the choice of anesthetic agent may significantly impact splanchnic blood flow and needs to be taken into account when designing experiments examining effects of hemorrhagic shock.


Sign in / Sign up

Export Citation Format

Share Document