Temporal patterns of tissue glycogen, glucose, and glycogen phosphorylase activity prior to hibernation in freeze-tolerant chorus frogs, Pseudacris triseriata

2008 ◽  
Vol 86 (10) ◽  
pp. 1095-1100 ◽  
Author(s):  
Steve C. Dinsmore ◽  
David L. Swanson

Freezing survival may differ among winters in chorus frogs ( Pseudacris triseriata (Wied-Neuwied, 1838)), and low freezing survival is associated with low hepatic glycogen stores. The pattern of prehibernation liver glycogen accumulation in chorus frogs is unknown. Frogs might accumulate hepatic glycogen stores until a threshold level sufficient for winter survival is attained, after which frogs enter hibernation (critical threshold hypothesis). According to this model, frogs active late in the season should only be those with low hepatic glycogen stores. Alternatively, hepatic glycogen levels might continue to increase throughout the fall as long as frogs remain active (continuous increase hypothesis). We tested these hypotheses by measuring liver and leg muscle glycogen, glucose, and glycogen phosphorylase activities in chorus frogs throughout the fall prehibernation period in southeastern South Dakota. Hepatic glycogen levels were significantly related to date and increased throughout the fall period, consistent with the continuous increase hypothesis. This suggests that hepatic glycogen levels do not serve as a cue for entrance into hibernation. Liver phosphorylase activity did not vary significantly with progression of the fall season and activity was lower than in winter, suggesting that the winter increment of phosphorylase activity requires some stimulus during hibernation (e.g., low temperatures).

1989 ◽  
Vol 257 (1) ◽  
pp. E74-E80
Author(s):  
J. Rulfs ◽  
S. R. Jaspers ◽  
A. K. Garnache ◽  
T. B. Miller

Whereas total cardiac glycogen phosphorylase activity appears to be unaffected by severe insulin deficiency, a diabetes-induced decreased in hepatic glycogen phosphorylase activity has been demonstrated by our laboratory and others using liver extracts, isolated perfused liver, and cultured hepatocytes. The loss of activity in diabetic liver can be correlated with a drop in protein levels. Using primary cultures of cells from normal and diabetic rats and phosphorylase specific antibodies, we found a corresponding decrease in phosphorylase synthesis in diabetic hepatocytes cultured for 2 days in a serum-free, chemically defined medium. When hepatocytes are cultured in the presence of insulin, triiodothyronine, and cortisol, there is a significant recovery in the rate of phosphorylase synthesis after 3 days. Over the 3-day time period, there is no significant difference in the rate of phosphorylase degradation in normal compared with diabetic hepatocytes. Total protein synthesis in both hepatocytes and cardiomyocytes is unaffected by diabetes, as is phosphorylase synthesis in cultured cardiomyocytes.


1976 ◽  
Vol 231 (4) ◽  
pp. 1285-1289 ◽  
Author(s):  
O Giger ◽  
RE McCallum

The present study was undertaken to characterize endotoxin-induced changes in carbohydrate metabolism and more specifically, to determine the contribution of glycogenolysis to the loss of liver glycogen. Female ICR mice, fasted overnight, were injected with a median lethal dose (LD50, 9 mg/kg) of endotoxin extracted from Salmonella typhimurium strain SR-11. Glycogen synthase and glycogen phosphorylase activities were measured at 0.5 and 6 h after treatment. Endotoxin treatment did not alter total glycogen synthase activity, but the amount of enzyme present in the active form was significantly lower in endotoxic mice. There was no significant increase in glycogen phosphorylase activity in endotoxin-treated mice. Glycogen phosphorylase was activated to the same extent in control and endotoxic mice by decapitation or intravenous epinephrine (25 or 1 mug/kg). The results of this study indicate no significant increase in glycogen phosphorylase activity in endotoxic mice, contraindicating enhanced glycogenolysis as a mechanism for depletion of carbohydrate following endotoxin injection. Altered activation of glycogen synthase, however, may contribute to the loss of glycogen during endotoxemia.


1992 ◽  
Vol 263 (1) ◽  
pp. E42-E49 ◽  
Author(s):  
C. B. Niewoehner ◽  
B. Neil

We have compared the effects of administration of oral galactose or glucose (1 g/kg) to 24-h fasted rats to examine the mechanism by which galactose regulates its own incorporation into liver glycogen in vivo. Liver glycogen increased to a maximum more slowly after galactose than after glucose administration (0.14 vs. 0.29 mumol.g liver-1.min-1). Glycogen accumulation after the galactose load was 70% of that after the glucose load (149 vs. 214 mumol), and the net increase in liver glycogen represented the same proportion (24 vs. 22%) of added carbohydrate after urinary loss of galactose was accounted for. Slower glycogen accumulation after galactose vs. glucose loading could not be explained by galactosuria, by differences in the active forms of synthase or phosphorylase, by end product (glycogen) inhibition of synthase phosphatase, or by different concentrations of the known allosteric effectors of synthase R plus I and phosphorylase a. Similar increases in glucose 6-phosphate were observed after both hexoses. AMP and ADP increased only transiently after galactose administration, and ATP, UTP, and Pi concentrations were unchanged. The UDP-glucose concentration decreased, whereas the UDP-galactose concentration increased two- to threefold after galactose but not glucose administration. The UDP-glucose pyrophosphorylase reaction is inhibited competitively by UDP-galactose. This could explain the decreased UDP-glucose concentration and the reduced rate of glycogen synthesis after galactose was given.


1989 ◽  
Vol 9 (4) ◽  
pp. 1659-1666 ◽  
Author(s):  
P K Hwang ◽  
S Tugendreich ◽  
R J Fletterick

In yeast cells, the activity of glycogen phosphorylase is regulated by cyclic AMP-mediated phosphorylation of the enzyme. We have previously cloned the gene for glycogen phosphorylase (GPH1) in Saccharomyces cerevisiae. To assess the role of glycogen and phosphorylase-catalyzed glycogenolysis in the yeast life cycle, yeast strains lacking a functional GPH1 gene or containing multiple copies of the gene were constructed. GPH1 was found not to be an essential gene in yeast cells. Haploid cells disrupted in GPH1 lacked phosphorylase activity and attained higher levels of intracellular glycogen but otherwise were similar to wild-type cells. Diploid cells homozygous for the disruption were able to sporulate and give rise to viable ascospores. Absence of functional GPH1 did not impair cells from synthesizing and storing trehalose. Increases in phosphorylase activity of 10- to 40-fold were detected in cells carrying multiple copies of GPH1-containing 2 microns plasmid. Northern (RNA) analysis indicated that GPH1 transcription was induced at the late exponential growth phase, almost simultaneous with the onset of intracellular glycogen accumulation. Thus, the low level of glycogen in exponential cells was not primarily maintained through regulating the phosphorylation state of a constitutive amount of phosphorylase. GPH1 did not appear to be under formal glucose repression, since transcriptional induction occurred well in advance of glucose depletion from the medium.


1979 ◽  
Vol 178 (2) ◽  
pp. 493-496 ◽  
Author(s):  
C J Kirk ◽  
L M Rodrigues ◽  
D A Hems

The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared. Although the individual peptides differed in their potencies, the concentrations required to stimulate phosphatidylinositol metabolism were always greater (about 10 times) than those needed to activate phosphorylase. The molecular specificity of the hepatic vasopressin receptor and the role of vasopressin-stimulated phosphatidylinositol turnover are discussed.


1991 ◽  
Vol 69 (6) ◽  
pp. 841-845 ◽  
Author(s):  
Harry Koubi ◽  
Claude Duchamp ◽  
Alain Géloën ◽  
Alain Fréminet ◽  
Yves Minaire

Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4–7 °C). After a 2-day fast at 25 °C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated.Key words: glycogen, fasting and refeeding, cold exposure, obesity, liver.


1977 ◽  
Vol 55 (8) ◽  
pp. 1304-1311 ◽  
Author(s):  
R. M. Walker ◽  
P. H. Johansen

At 20 °C goldfish survive anaerobic conditions for only a few hours while at 4 °C survival is extended to several days. During the course of low-temperature anaerobiosis there was a rise in blood glucose and lactate, a decline in liver glycogen concentration, and an increase in liver water content, while liver size remained constant.The better cold anaerobic survival of winter and hypophysectomized goldfish compared with spring and sham-operated animals was correlated with greater glycogen stores in the livers of the former. It is concluded that liver glycogen is a necessary energy source during cold anaerobiosis, and it is suggested that the resulting hyperglycemia may represent a mechanism to increase glycolytic energy yield. Cold anaerobiosis also resulted in elevated liver glucose-6-phosphatase (EC 3.1.3.9) activity, suggesting an increase in glycogenolysis, but no change in glycogen phosphorylase (EC 2.4.1.1) activity. While cold anaerobic survival is short term it is possible that liver glycogen may sustain goldfish for longer periods at low oxygen levels through a mixed aerobic–anaerobic metabolism.


1995 ◽  
Vol 269 (2) ◽  
pp. E231-E238 ◽  
Author(s):  
N. Ercan ◽  
M. C. Gannon ◽  
F. Q. Nuttall

Rats fed ad libitum were given insulin alone (4 U/kg), glucagon alone (25 micrograms/kg), or insulin and glucagon sequentially. Phosphorylase a and synthase R activities, hepatic glycogen, uridine diphosphoglucose, inorganic phosphate (Pi), and plasma glucose, lactate, glucagon, and insulin concentrations were determined over the subsequent 40 min. In separate animals, muscle extraction of 2-deoxy-D-[3H]glucose also was determined. After glucagon administration, glycogen phosphorylase a and plasma glucose were increased within 5 min. However, the glycogen concentration did not decrease for 20 min. Glucagon administration to rats pretreated with insulin stimulated a similar increase in phosphorylase a activity. Again, glycogen was not degraded for 20 min. After insulin only, glycogen concentration remained unchanged. Plasma glucose decreased as expected. In each group, muscle extraction of 2-deoxy-D-[3H]glucose increased compared with the controls (P < 0.05). In summary, glucagon and/or insulin administration did not stimulate significant glycogen degradation for 20 min, even though phosphorylase was activated. The mechanism remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document