Immediate response of the hemoglobin system of the goldfish, Carassius auratus, to temperature change

1976 ◽  
Vol 54 (10) ◽  
pp. 1737-1741 ◽  
Author(s):  
A. H. Houston ◽  
R. Rupert

Goldfish acclimated to 3 and 23 °C were characterized by two- and three-component hemoglobin systems, respectively. After acclimation to a diurnally cycling temperature regime (~3 to ~23 °C), specimens sampled at ~23 °C and ~3 °C were identical in terms of hemoglobin system complexity with those held at equivalent constant temperatures. Abrupt transfer of fish acclimated at constant 23 °C to 3 °C, and vice versa, lead to appearance or disappearance of the minor component, G.1, within 3 h. In vitro cooling and warming of whole blood and hemolyzate samples indicated that hemoglobin system modification occurred under cell-free as well as cell-intact conditions. These observations suggest that previously observed quantitative variations in the hemoglobin systems of thermally acclimated teleosts may represent, in part at least, altered aggregation of preexisting subunits rather than de novo hemoglobin synthesis and raise the possibility that teleostean hemoglobin systems may possess a capacity for rapid, adaptative reorganization after environmental temperature variation.

1988 ◽  
Vol 254 (1) ◽  
pp. 67-71 ◽  
Author(s):  
B Rüstow ◽  
Y Nakagawa ◽  
H Rabe ◽  
K Waku ◽  
D Kunze

1. Phosphatidylinositol (PI) is a minor component of lung surfactant which may be able to replace the functionally important phosphatidylglycerol (PG) [Beppu, Clements & Goerke (1983) J. Appl. Physiol. 55, 496-502] without disturbing lung function. The dipalmitoyl species is one of the main species for both PI (14.4%) and PG (16.9%). Besides the C16:0--C16:0 species, the C16:0--C18:0, C16:0--C18:1, C16:0--C18:2 and C18:0--C18:1 species showed comparable proportions in the PG and PI fractions. These similarities of the species patterns and the acidic character of both phospholipids could explain why surfactant PG may be replaced by PI. 2. PI and PG were radiolabelled by incubation of microsomal fractions with [14C]glycerol 3-phosphate (Gro3P). For 11 out of 14 molecular species of PI and PG we measured comparable proportions of radioactivity. The radioactivity of these 11 species accounted together for more than 80% of the total. The addition of inositol to the incubation system decreased the incorporation in vitro of Gro3P into PG and CDP-DG (diacylglycerol) of lung microsomes (microsomal fractions), but did not change the distribution of radioactivity among the molecular species of PG. These results supported the idea that both acidic surfactant phospholipids may be synthesized de novo from a common CDP-DG pool in lung microsomes.


1992 ◽  
Vol 263 (5) ◽  
pp. E943-E949 ◽  
Author(s):  
S. Y. Hsu ◽  
F. W. Goetz

The present study investigated the effects of a number of oxoanion compounds on in vitro ovulation of goldfish follicles and ovarian second messenger activities. Significant levels of ovulation were induced by 0.1 mM sodium chromate, 0.1 mM sodium metavanadate, 10 mM sodium molybdate, 0.1 mM sodium orthovanadate, 5 mM sodium selenate, 0.5 mM sodium tungstate, and 0.1 mM vanadyl sulfate. At levels that significantly stimulated ovulation, metavanadate, molybdate, orthovanadate, tungstate, and vanadyl sulfate also stimulated follicular phosphatidylinositol cycling and inhibited ovarian alkaline phosphatase activity. Moreover, the ovulation induced by these oxoanions was not inhibited by indomethacin (10 micrograms/ml), while ovulation induced by selenate and chromate was. In contrast, only vanadium-containing compounds significantly stimulated prostaglandin (PG) synthesis, and, in fact, selenate significantly inhibited PG production. Finally, only sodium molybdate- and vanadium-containing compounds appeared to increase follicular adenosine 3',5'-cyclic monophosphate content. While all oxoanions stimulated in vitro ovulation, they had differential effects on certain signal transduction pathways when tested at concentrations that stimulated in vitro ovulation. From the results, two basic groups could be delineated, one containing tungstate-, molybdate-, and vanadium-containing compounds and the other selenate and chromate. Thus the mechanism by which ovulation is induced by chromate and selenate may be different from that of vanadium-containing compounds, molybdate, and tungstate.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 66 (3) ◽  
pp. 729-736 ◽  
Author(s):  
A. H. Houston ◽  
A. Murad ◽  
J. D. Gray

Immersion of goldfish, Carassius auratus, in 1 mg∙L−1 phenylhydrazine hydrochloride at 5 °C for 48 h led to reductions of 90–95% in hemoglobin and hematocrit within 10–14 days. Under similar conditions, 96-h exposures prompted heavy mortality. Fewer mortalities occurred after 24-h exposure periods; however, only modest reductions in O2-carrying capacity were seen. All higher concentration (2, 5, 10, 50 mg∙L−1) and temperature (10, 15, 20 °C) combinations led to complete mortality within 12–96 h regardless of exposure period (24, 48, 96 h). Exposure to phenylhydrazine hydrochloride caused decreases in hemoglobin and hematocrit, changes in the abundances of specific hemoglobin isomorphs, and the transient appearance of novel hemoglobin mobilities as well as evidence of osmo- and iono-regulatory dysfunction. Slow warming to 20 °C prompted red cell proliferation and hemoglobin synthesis and restoration of typical hemoglobin isomorph abundances. Incidence of transfer stresses was monitored by reference to differential leucocyte counts. Transfer led to lymphopenia and thrombopenia with neutrophilia and eosinophilia. Warming was accompanied by increases in lymphocyte and thrombocyte counts and reductions in those of monocytes and all granulocytes.


1993 ◽  
Vol 71 (11) ◽  
pp. 2190-2198 ◽  
Author(s):  
Ajmal Murad ◽  
Susan Everill ◽  
Arthur Houston

Erythrocyte division occurs in the blood of goldfish, Carassius auratus L., and is particularly prominent during response to respiratory stresses. The process involves nuclear elongation followed by cellular elongation, central constriction, and attenuation culminating in cell separation. Cytomorphic criteria developed in an earlier study of red cell maturation in this species suggest that the process is restricted to juvenile cells: those possessing the organelles required for hemoglobin synthesis. Consistent with this, but in distinct contrast to mature erythrocytes, dividing cells resemble juvenile cells in their incorporation of 55Fe. This is subsequently detectable by autoradiography in hemoglobin electropherograms. Immuno-fluorescent antibody probes for tubulin and actin revealed an ordered sequence of cytoskeletal changes during the division process. However, the nuclei of dividing cells do not take up [3H]thymidine, and although colchicine and nocodazole treatment led to the appearance of metaphase figures in pronephric and splenic erythroid cells, these were not evident in dividing cells. The nature and possible significance of the process are discussed.


1966 ◽  
Vol 23 (8) ◽  
pp. 1109-1120 ◽  
Author(s):  
Neil Ward Falkner ◽  
A. H. Houston

Red cell numbers and haematocrit values were notable principally for their constancy during a 10-day experimental period following the exposure of goldfish acclimated to 20 C to an abrupt increase of 10 C in environmental temperature. Mean erythrocytic volume underwent a transient decrease while total blood iron (and presumably haemoglobin) and mean erythrocytic iron content fell slightly during the latter portion of the period of observation. Goldfish maintained at 5 C were typically characterized by two haemoglobin polymorphs, a third fraction being commonly found in animals acclimated at 12, 20, and 30 C. The observations are discussed in relation to the respiratory acclimation of this species to increases in environmental temperature.


Sign in / Sign up

Export Citation Format

Share Document