Evidence for dissolved glucose uptake from seawater by Neocalanus plumchrus (Arthropoda, Copepoda)

1981 ◽  
Vol 59 (8) ◽  
pp. 1618-1621 ◽  
Author(s):  
Peter M. Chapman

Autoradiographic techniques indicate that Neocalanus plumchrus is capable of removing labelled glucose from seawater at concentrations as low as 2.3 × 10−9 M. Uptake is via dermal glands and midgut. Consequent glucose transfer occurs through haemocoel to muscles and germinal tissue.

1990 ◽  
Vol 64 (2) ◽  
pp. 449-462 ◽  
Author(s):  
B. J. Leury ◽  
A. R. Bird ◽  
K. D. Chandler ◽  
A. W. Bell

Maternal whole-body glucose entry rate and uterine and umbilical net uptakes of glucose and oxygen were measured in single-pregnant ewes which were either well-fed throughout, or fed at 0.3–0.4 predicted energy requirement for 7–21 d during late pregnancy. All ewes were studied while standing at rest and then while walking on a treadmill at 0.7 m/s on a 10° slope for 60 min. Underfed ewes suffered significant decreases in live weight and had lower fetal, but not placental, weights at 140–144 d gestation. Undernutrition also caused large decreases in maternal glycaemia and glucose entry rate, which were associated with equally large decreases in uterine and umbilical net uptakes and O2 quotients of glucose, and with a decrease in placental glucose transfer capacity. Exercise caused increases in maternal blood concentration, entry rate and uterine net uptake of glucose, the magnitudes of which were not significantly affected by plane of nutrition. Umbilical glucose uptake and placental glucose transfer capacity increased during exercise in underfed but not fed ewes. The fractional distribution of maternal glucose to the pregnant uterus, and of uterine glucose uptake to the fetus, were unaltered by undernutrition; during exercise, a disproportionately small fraction of the increased maternal glucose supply went to the uterus. The results confirm that the ovine conceptus responds to nutritional reduction in maternal glucose availability in a manner similar to non-uterine maternal tissues. Major reductions in glucose supply appear to override putative glucose-sparing mechanisms which may operate to favour the conceptus in better-nourished animals.


1990 ◽  
Vol 258 (2) ◽  
pp. E360-E367 ◽  
Author(s):  
J. E. DiGiacomo ◽  
W. W. Hay

To determine the separate effects of changes in fetal glucose and insulin concentrations on uteroplacental glucose transfer (UPGT) and consumption (UPGC) we studied 24 late-gestation pregnant sheep during fetal insulin infusions alone and with simultaneous glucose clamp. Insulin infusion alone increased fetal glucose utilization rate (GUR) by 45% (P less than 0.001), decreasing fetal glucose concentration by 40% (P less than 0.01) and thereby increasing fetal glucose clearance (Clglu) by 150% (P less than 0.001). Maternal-fetal glucose gradient also increased, resulting in a 40% increase (P less than 0.02) in UPGT [measured as umbilical glucose uptake (UGU)] and a 30% decrease (P less than 0.05) in UPGC. Addition of a fetal glucose clamp returned fetal glucose concentration to base line and restored UPGC and UGU to control values with a further 2.25-fold increase in fetal GUR. Clglu did not change, as the increase in GUR was proportional to the increase in fetal glucose concentration. Similarly, in animals receiving an insulin infusion plus glucose clamp throughout, maternal glucose concentration, fetal glucose concentration, UPGC, and UGU did not change, whereas GUR and Clglu increased approximately 1.9-fold. These changes were noted at constant maternal glucose concentration and uterine glucose uptake. Thus variation in fetal glucose concentration rather than fetal insulin concentration directly regulates uteroplacental glucose transfer and consumption, whereas both fetal insulin and glucose affect, in separate ways, fetal glucose utilization and clearance.


Author(s):  
J. E. Lai-Fook

Dermal glands are epidermal derivatives which are reported to secrete either the cement layer, which is the outermost layer of the epicuticle or some component of the moulting fluid which digests the endocuticle. The secretions do not show well-defined staining reactions and therefore they have not been positively identified. This has contributed to another difficulty, namely, that of determining the time of secretory activity. This description of the fine structure of the developing glands in Rhodnius was undertaken to determine the time of activity, with a view to investigating their function.


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
R Zapata-Bustos ◽  
AJ Alonso-Castro ◽  
J Romo-Yañez ◽  
LA Salazar-Olivo
Keyword(s):  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
K Christensen ◽  
D Kotowska ◽  
L Olsen ◽  
S Bhattacharya ◽  
X Fretté ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HC Huang ◽  
CL Chao ◽  
SY Hwang ◽  
TC Chang ◽  
CH Chao ◽  
...  

2010 ◽  
Vol 49 (02) ◽  
pp. N10-N12 ◽  
Author(s):  
F. Cicone ◽  
M. Stalder ◽  
D. Geiger ◽  
A. Cairoli ◽  
A. Bischof Delaloye ◽  
...  

2018 ◽  
Vol 56 (08) ◽  
pp. e200-e201
Author(s):  
H Jodeleit ◽  
O Al-amodi ◽  
J Caesar ◽  
C Villarroel Aguilera ◽  
L Holdt ◽  
...  

2014 ◽  
Author(s):  
Daniel Kelly ◽  
Samia Akhtar ◽  
Susannah Bowskill ◽  
Zoe Smallwood ◽  
Hugh Jones
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document