Coevolution of the rennin–angiotensin system and the nervous control of blood circulation

1984 ◽  
Vol 62 (2) ◽  
pp. 137-147 ◽  
Author(s):  
John X. Wilson

The mammalian renin–angiotensin system appears to be involved in the maintenance of blood volume and pressure because (i) sodium depletion, hypovolemia, and hypotension increase renin levels, and (ii) administration of exogenous angiotensin II rapidly increases mineralocorticoid and antidiuretic hormone production, transepithelial ion transport, drinking behavior, and peripheral vascular resistance. Are these also the physiological properties of the renin–angiotensin system in nonmammalian species? Signals for altered levels of renin activity have yet to be conclusively identified in nonmammalian vertebrates, but circulating renin levels are elevated by hypotension in teleost fish and birds. Systemic injection of angiotensin II causes an increase in arterial blood pressure in all the vertebrates studied, suggesting that barostatic control is a universal function of this hormone. Angiotensin II alters vascular tone by direct action on arteriolar muscles in some species, but at concentrations of the hormone which probably are unphysiological. More generally, angiotensin II increases blood pressure indirectly, by acting on the sympathetic nervous system. Catecholamines, derived from chromaffin cells and (or) from peripheral adrenergic nerves, mediate some portion of the vasopressor response to angiotensin II in cyclostomes, elasmobranchs, teleosts, amphibians, reptiles, mammals, and birds. Alteration of sympathetic outflow is a prevalent mechanism through which the renin–angiotensin system may integrate blood volume, cardiac output, and peripheral vascular resistance to achieve control of blood pressure and adequate perfusion of tissues.

2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Fabrizio Montecucco ◽  
Aldo Pende ◽  
François Mach

Recent evidence shows that the renin-angiotensin system is a crucial player in atherosclerotic processes. The regulation of arterial blood pressure was considered from its first description of the main mechanism involved. Vasoconstriction (mediated by angiotensin II) and salt and water retention (mainly due to aldosterone) were classically considered as pivotal proatherosclerotic activities. However, basic research and animal studies strongly support angiotensin II as a proinflammatory mediator, which directly induces atherosclerotic plaque development and heart remodeling. Furthermore, angiotensin II induces proatherosclerotic cytokine and chemokine secretion and increases endothelial dysfunction. Accordingly, the pharmacological inhibition of the renin-angiotensin system improves prognosis of patients with cardiovascular disease even in settings of normal baseline blood pressure. In the present review, we focused on angiotensin-convertingenzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and renin inhibitors to update the direct activities of the renin-angiotensin system in inflammatory processes governing atherosclerosis.


1983 ◽  
Vol 102 (3) ◽  
pp. 439-446
Author(s):  
J. R. Sowers ◽  
J. D. Barrett

Abstract. The renin-angiotensin system was examined in Fischer rats at 7, 11 and 14 days after Leydig cell tumour transplantation and in age matched controls. Mean arterial blood pressure (MAP), active plasma renin and serum calcium were higher (P < 0.01) in the tumour transplant rats than in the controls at 11 days after transplantation. There was a positive correlation of both active renin and MAP with serum calcium at this time. Although inactive renin levels were elevated in the tumour transplanted rats, the ratio of inactive to active renin was decreased in comparison to controls. Plasma norepinephrine, active renin and plasma angiotensin II were higher in tumour rats at 14 days. Nevertheless, basal levels of aldosterone and MAP as well as aldosterone responses to graded infusion of angiotensin II, ACTH and KCl were decreased in the tumour rats at 14 days. Moderate hypercalcaemia (day 7 and 11), induced by Leydig cell transplantation in the Fischer rat, is associated, therefore with elevated blood pressure which appears to be related, in part, to activation of the reninangiotensin system. However, severe hypercalcaemia (day 14) was associated with hypotensive hyperreninaemic hypoaldosteronism state.


2003 ◽  
Vol 98 (6) ◽  
pp. 1338-1344 ◽  
Author(s):  
Gilles Boccara ◽  
Alexandre Ouattara ◽  
Gilles Godet ◽  
Eric Dufresne ◽  
Michèle Bertrand ◽  
...  

Background Terlipressin, a precursor that is metabolized to lysine-vasopressin, has been proposed as a drug for treatment of intraoperative arterial hypotension refractory to ephedrine in patients who have received long-term treatment with renin-angiotensin system inhibitors. The authors compared the effectiveness of terlipressin and norepinephrine to correct hypotension in these patients. Methods Among 42 patients scheduled for elective carotid endarterectomy, 20 had arterial hypotension following general anesthesia that was refractory to ephedrine. These patients were the basis of the study. After randomization, they received either 1 mg intravenous terlipressin (n = 10) or norepinephrine infusion (n = 10). Beat-by-beat recordings of systolic arterial blood pressure and heart rate were stored on a computer. The intraoperative maximum and minimum values of blood pressure and heart rate, and the time spent with systolic arterial blood pressure below 90 mmHg and above 160 mmHg, were used as indices of hemodynamic stability. Data are expressed as median (95% confidence interval). Results Terlipressin and norepinephrine corrected arterial hypotension in all cases. However, time spent with systolic arterial blood pressure below 90 mmHg was less in the terlipressin group (0 s [0-120 s] vs. 510 s [120-1011 s]; P &lt; 0.001). Nonresponse to treatment (defined as three boluses of terlipressin or three changes in norepinephrine infusion) occurred in zero and eight cases (P &lt; 0.05), respectively. Conclusions In patients who received long-term treatment with renin-angiotensin system inhibitors, intraoperative refractory arterial hypotension was corrected with both terlipressin and norepinephrine. However, terlipressin was more rapidly effective for maintaining normal systolic arterial blood pressure during general anesthesia.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
María Sánchez-Aguilar ◽  
Luz Ibarra-Lara ◽  
Leonardo Del Valle-Mondragón ◽  
María Esther Rubio-Ruiz ◽  
Alicia G. Aguilar-Navarro ◽  
...  

Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to act as insulin sensitizer and exert cardiovascular actions. In this work, we hypothesized that RGZ exerts a PPARγ–dependent regulation of blood pressure through modulation of angiotensin-converting enzyme (ACE)-type 2 (ACE2)/angiotensin-(1-7)/angiotensin II type-2 receptor (AT2R) axis in an experimental model of high blood pressure. We carried on experiments in normotensive (Sham) and aortic coarctation (AoCo)-induced hypertensive male Wistar rats. Both sham and AoCo rats were treated 7 days with vehicle (V), RGZ (5 mg/kg/day), or RGZ+BADGE (120 mg/kg/day) post-coarctation. We measured blood pressure and vascular reactivity on aortic rings, as well as the expression of renin-angiotensin system (RAS) proteins. We found that RGZ treatment in AoCo group decreases blood pressure values and improves vascular response to acetylcholine, both parameters dependent on PPARγ-stimulation. RGZ lowered serum angiotensin II (AngII) but increased Ang-(1-7) levels. It also decreased 8-hydroxy-2′-deoxyguanosine (8-OH-2dG), malondialdehyde (MDA), and improved the antioxidant capacity. Regarding protein expression of RAS, RGZ decreases ACE and angiotensin II type 1 receptor (AT1R) and improved ACE2, AT2R, and Mas receptor in AoCo rats. Additionally, an in silico analysis revealed that 5′UTR regions of RAS and PPARγ share motifs with a transcriptional regulatory role. We conclude that RGZ lowers blood pressure values by increasing the expression of RAS axis proteins ACE2 and AT2R, decreasing the levels of AngII and increasing levels of Ang-(1-7) in a PPARγ-dependent manner. The in silico analysis is a valuable tool to predict the interaction between PPARγ and RAS.


2019 ◽  
Vol 20 (1) ◽  
pp. 147032031983440 ◽  
Author(s):  
Zhongming Zhang ◽  
Yijing Zhang ◽  
Yan Wang ◽  
Shengchen Ding ◽  
Chenhui Wang ◽  
...  

Introduction: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. Materials and methods: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/–), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin–angiotensin system components in the laminal terminalis and peripheral organs. Results: Nestin-BDNF (+/–) mice had lower renin–angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin–angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. Conclusion: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin–angiotensin system molecules.


2020 ◽  
Vol 318 (2) ◽  
pp. G313-G321 ◽  
Author(s):  
Mads Israelsen ◽  
Emilie Kristine Dahl ◽  
Bjørn Stæhr Madsen ◽  
Signe Wiese ◽  
Flemming Bendtsen ◽  
...  

Acute kidney injury and hepatorenal syndrome (HRS) are frequent complications in patients with cirrhosis and ascites. First-line treatment is terlipressin, which reverses HRS in ~40% of patients but also lowers cardiac output (CO). We aimed to investigate whether reversing the cardio-suppressive effect of terlipressin with the β-adrenoceptor agonist dobutamine would increase CO and thereby increase the glomerular filtration rate (GFR). We randomized 25 patients with cirrhosis, ascites, and impaired renal function (2:2:1): group A received terlipressin followed by the addition of dobutamine; group B received dobutamine and terlipressin as monotherapies; and group C received placebo. Renal and cardiac functions were assessed during 8 clearance periods of 30 min, and concentrations of vasoactive hormones were measured. Dobutamine as a monotherapy increased CO (1.03 L/min, P < 0.01) but had no significant effects on GFR. Renin ( P < 0.05), angiotensin II ( P < 0.005), and aldosterone ( P < 0.05) increased after dobutamine infusion. Terlipressin as a monotherapy improved GFR (18.9 mL·min−1·m−2, P = 0.005) and mean arterial pressure (MAP) (14 mmHg, P = 0.001) but reduced CO (−0.92 L/min, P < 0.005) and renin ( P < .005). A combined treatment of dobutamine and terlipressin had a positive effect on CO (1.19 L/min, P < 0.05) and increased renin ( P < 0.005), angiotensin II ( P < 0.005), and aldosterone ( P < 0.05), but it had no significant effects on MAP or GFR. Dobutamine reversed the cardio-suppressive effect of terlipressin in cirrhosis, ascites, and impaired renal function. However, dobutamine reduced peripheral vascular resistance, activated renin-angiotensin-aldosterone system, and did not improve GFR compared with terlipressin as a monotherapy. Therefore, dobutamine cannot be recommended in cirrhosis and ascites. NEW & NOTEWORTHY This study shows that the cardio-suppressive effects of the vasopressin receptor agonist terlipressin can be reversed by dobutamine. This is a novel observation in patients with decompensated cirrhosis. Furthermore, we show that dobutamine reduced the peripheral vascular resistance and activated the renin-angiotensin system, whereas renal function was not further improved by terlipressin alone.


Hypertension ◽  
2010 ◽  
Vol 56 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Glen E. Foster ◽  
Patrick J. Hanly ◽  
Sofia B. Ahmed ◽  
Andrew E. Beaudin ◽  
Vincent Pialoux ◽  
...  

1981 ◽  
Vol 240 (1) ◽  
pp. R75-R80 ◽  
Author(s):  
M. C. Lee ◽  
T. N. Thrasher ◽  
D. J. Ramsay

The role of the renin-angiotensin system in drinking induced by water deprivation and caval ligation was assessed by infusion of saralasin into the lateral ventricles of rats. This technique was first validated by demonstrating its capability to specifically antagonize drinking to both systemic and central angiotensin II. However, neither the latency to drink nor the amount of water consumed following 24- or 30-h water deprivation was affected by saralasin. Furthermore, saralasin had no significant effect on the recovery of blood pressure or on the water intake following ligation of the abdominal vena cava. These observations suggest that the renin-angiotensin system alone does not play an essential role in the control of drinking following water deprivation or caval ligation in rats.


1978 ◽  
Vol 54 (6) ◽  
pp. 633-637 ◽  
Author(s):  
M. Fernandes ◽  
R. Fiorentini ◽  
G. Onesti ◽  
G. Bellini ◽  
A. B. Gould ◽  
...  

1. Sar1-Ala8-Angiotensin II (an angiotensin antagonist) was infused in rats during the development and maintenance of renal hypertension produced by aortic ligation between renal arteries. 2. In the early phase (5 and 12 days after ligation), infusion of the antagonist markedly decreased blood pressure although it did not reach normal pressures. Later (day 40) only a modest decrease in blood pressure was noted. 3. Removal of the small left kidney always decreased the blood pressure to normal pressures. 4. It is concluded that the renin—angiotensin system is the major pressor component in the initiation of this hypertension. Later, other factors of renal origin assume a pressor function.


1984 ◽  
Vol 246 (1) ◽  
pp. E84-E88
Author(s):  
C. D. Simon ◽  
T. W. Honeyman ◽  
J. C. Fray

The mechanisms whereby the pituitary gland maintains arterial pressure were investigated in rats. The arterial pressure in hypophysectomized rats was 30 mmHg below normal. Saralasin or captopril caused a further fall of 25 and 30 mmHg, respectively, suggesting that the renin-angiotensin system plays a role in blood pressure maintenance in hypophysectomized rats. Growth hormone administration to hypophysectomized rats increased the arterial pressure, but pretreatment with captopril prevented the effect. Plasma renin activity and basal renin secretion (in vitro) was normal in hypophysectomized rats despite a twofold greater renal renin content. Secretory responsiveness to isoproterenol and calcium omission was lower in hypophysectomized rats. It is concluded that the renin-angiotensin system plays a role in maintaining arterial blood pressure in hypophysectomized rats although the responsiveness of the system may be decreased.


Sign in / Sign up

Export Citation Format

Share Document