Sodium balance in ruffed grouse as influenced by sodium levels and plant secondary metabolites in quaking aspen

1995 ◽  
Vol 73 (6) ◽  
pp. 1106-1114 ◽  
Author(s):  
Walter J. Jakubas ◽  
Christopher G. Guglielmo ◽  
Conrad Vispo ◽  
William H. Karasov

Forages in boreal ecosystems are often deficient in sodium for mammalian herbivores. Moreover, consumption of various plant secondary metabolites has been associated with negative sodium balance in mammals. Neither of these issues has been investigated in birds, which differ from mammals in their ion-exchange processes and postrenal absorption of urine. Our objectives were to determine if ruffed grouse (Bonasa umbellus) can maintain sodium balance on quaking aspen (Populus tremuloides) flower buds, an important winter food, and to determine if the buds' primary plant secondary metabolite (coniferyl benzoate) further compromises a bird's sodium balance. Captive ruffed grouse were fed either aspen buds (0.063 mg∙g−1 sodium) or a formulated diet having different concentrations of coniferyl benzoate in no-choice feeding trials. Sodium excretion did not change in response to coniferyl benzoate intake or acid load from detoxication processes; however, birds were marginally in negative sodium balance (P = 0.035; −5.06 ± 2.05 mg∙kg−1∙d−1) when feeding on aspen buds. Sodium levels in the feces from free-ranging grouse (0.050 ± 0.0 mg∙g−1) and in their winter foods (0.065 mg∙g−1) indicated that these birds likely maintained sodium balance. We estimated that free-ranging ruffed grouse may need as little as 7 mg∙kg−1∙d−1 of sodium to maintain sodium balance, which is lower than the minimum sodium requirements for poultry and mammals.

2020 ◽  
Vol 125 (7) ◽  
pp. 1065-1075
Author(s):  
Tao Li ◽  
Päivi Tiiva ◽  
Åsmund Rinnan ◽  
Riitta Julkunen-Tiitto ◽  
Anders Michelsen ◽  
...  

Abstract Background and Aims Plant secondary metabolites play critical roles in plant stress tolerance and adaptation, and are known to be influenced by the environment and climate changes, yet the impacts and interactions of multiple climate change components are poorly understood, particularly under natural conditions. Methods Accumulation of phenolics and emissions of volatile organic compounds (VOCs) were assessed on heather, Calluna vulgaris, an abundant evergreen dwarf shrub in European heathlands, after 6 years of exposure to elevated CO2, summer drought and nighttime warming. Key Results Drought alone had the strongest effects on phenolic concentrations and compositions, with moderate effects of elevated CO2 and temperature. Elevated CO2 exerted the greatest impact on VOC emissions, mainly by increasing monoterpene emissions. The response magnitudes varied among plant tissue types and chemical constituents, and across time. With respect to interactive effects of the studied climate change components, the interaction between drought and elevated CO2 was most apparent. Drought mainly reduced phenolic accumulation and VOC emissions, while elevated CO2 mitigated such effects. Conclusions In natural ecosystems, co-occurring climate factors can exert complex impacts on plant secondary metabolite profiles, which may in turn alter ecosystem processes.


1990 ◽  
Vol 16 (4) ◽  
pp. 1077-1087 ◽  
Author(s):  
Walter J. Jakubas ◽  
Gordon W. Gullion

1989 ◽  
Vol 15 (6) ◽  
pp. 1899-1917 ◽  
Author(s):  
Walter J. Jakubas ◽  
Gordon W. Gullion ◽  
Thomas P. Clausen

The Condor ◽  
1993 ◽  
Vol 95 (3) ◽  
pp. 625-640 ◽  
Author(s):  
Walter J. Jakubas ◽  
William H. Karasov ◽  
Christopher G. Guglielmo

2013 ◽  
Vol 61 (1) ◽  
pp. 52 ◽  
Author(s):  
R. Andrew Hayes ◽  
Helen F. Nahrung ◽  
David J. Lee

The present study examines patterns of heritability of plant secondary metabolites following hybridisation among three genetically homogeneous taxa of spotted gum (Corymbia henryi (S.T.Blake) K.D.Hill & L.A.S.Johnson, C. citriodora subsp. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora (Hook.) K.D.Hill & L.A.S.Johnson subsp. citriodora (section Maculatae), and their congener C. torelliana (F.Muell.) K.D. Hill & L.A.S.Johnson (section Torellianae)). Hexane extracts of leaves of all four parent taxa were statistically distinguishable (ANOSIM: global R = 0.976, P = 0.008). Hybridisation patterns varied among the taxa studied, with the hybrid formed with C. citriodora subsp. variegata showing an intermediate extractive profile between its parents, whereas the profiles of the other two hybrids were dominated by that of C. torelliana. These different patterns in plant secondary-metabolite inheritance may have implications for a range of plant–insect interactions.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 968
Author(s):  
Rahmatullah Jan ◽  
Sajjad Asaf ◽  
Muhammad Numan ◽  
Lubna ◽  
Kyung-Min Kim

Plant secondary metabolites (SMs) play important roles in plant survival and in creating ecological connections between other species. In addition to providing a variety of valuable natural products, secondary metabolites help protect plants against pathogenic attacks and environmental stresses. Given their sessile nature, plants must protect themselves from such situations through accumulation of these bioactive compounds. Indeed, secondary metabolites act as herbivore deterrents, barriers against pathogen invasion, and mitigators of oxidative stress. The accumulation of SMs are highly dependent on environmental factors such as light, temperature, soil water, soil fertility, and salinity. For most plants, a change in an individual environmental factor can alter the content of secondary metabolites even if other factors remain constant. In this review, we focus on how individual environmental factors affect the accumulation of secondary metabolites in plants during both biotic and abiotic stress conditions. Furthermore, we discuss the application of abiotic and biotic elicitors in culture systems as well as their stimulating effects on the accumulation of secondary metabolites. Specifically, we discuss the shikimate pathway and the aromatic amino acids produced in this pathway, which are the precursors of a range of secondary metabolites including terpenoids, alkaloids, and sulfur- and nitrogen-containing compounds. We also detail how the biosynthesis of important metabolites is altered by several genes related to secondary metabolite biosynthesis pathways. Genes responsible for secondary metabolite biosynthesis in various plant species during stress conditions are regulated by transcriptional factors such as WRKY, MYB, AP2/ERF, bZIP, bHLH, and NAC, which are also discussed here.


Sign in / Sign up

Export Citation Format

Share Document