Recaching of Jeffrey pine (Pinus jeffreyi) seeds by yellow pine chipmunks (Tamias amoenus): potential effects on plant reproductive success

1998 ◽  
Vol 76 (1) ◽  
pp. 154-162 ◽  
Author(s):  
Stephen B.Vander Wall ◽  
Jamie W Joyner

Animals that scatter-hoard seeds frequently dig up and recache them at new locations. The effect of the recaching of seeds on plant reproductive success was studied in the Sierra Nevada of western Nevada. The fate of 1000 individually marked Jeffrey pine (Pinus jeffreyi) seeds initially placed in 100 primary caches in a 10 x 10 array was monitored during autumn 1995 and spring 1996. Yellow pine chipmunks (Tamias amoenus) quickly removed nearly all of the seeds and recached many of them in 377 secondary caches containing 727 seeds. Later, rodents dug up most of these caches and transferred them to 213 tertiary caches (283 seeds), 75 quaternary caches (92 seeds), and 13 quintic (fifth order) caches (13 seeds). Overall, rodents ate 15.3% of the seeds they took from primary through quintic caches, and an additional 71.1% of the seeds disappeared, probably to underground runways and larders. During our spring survey of the study site, 133 seeds (13.6%) from 84 caches had germinated or were about to germinate. As rodents moved seeds from cache site to cache site, several changes occurred that potentially influenced the distribution and survival of Jeffrey pine seedlings. First, the number of seeds per cache decreased. Second, cached seeds were gradually moved farther from the source area. Third, the dispersal distance between successive cache sites decreased. Fourth, the distribution of cached seeds became more even. Lastly, more seeds were cached beneath shrubs, which serve as nurse plants for Jeffrey pine seedlings. Consequently, the movement of seeds between cache sites by chipmunks may increase the probability that Jeffrey pine seedlings will establish from rodent caches.

1992 ◽  
Vol 7 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Stephen B. Vander Wall

Abstract Jeffrey pine (Pinus jeffreyi) seeds have large wings and are effectively dispersed by wind, but 37% of the seedling emergence sites in spring 1989 in the Sierra Nevada of western Nevada consisted of tight clumps of seedlings. By fall 1989, 41% of all emergence sites where seedlings survived had resulted from what were originally clumps of seedlings. As Jeffrey pines aged, clumps became smaller, and the frequency of clumps decreased. These seedling clumps and many single seedlings emerged from the scattered caches of seed-hoarding rodents and corvids, and the activities of these animals in the study area were sufficient to account for most of the Jeffrey pine seedling establishment observed. Cached seeds may gain important advantages over uncached seeds in the semiarid habitat occupied by this pine. West. J. Appl. For. 7(1):14-20


2001 ◽  
Vol 31 (11) ◽  
pp. 1947-1957 ◽  
Author(s):  
K R Hubbert ◽  
J L Beyers ◽  
R C Graham

In the southern Sierra Nevada, California, relatively thin soils overlie granitic bedrock that is weathered to depths of several metres. The weathered granitic bedrock is porous and has a plant-available water capacity of 0.124 m3·m–3, compared with 0.196 m3·m–3 for the overlying soil. Roots confined within bedrock joint fractures access this rock-held water, especially during late summer when overlying soils are dry. We sought to determine seasonal soil and bedrock water changes in a Jeffrey pine (Pinus jeffreyi Grev & Balf.) plantation and to examine concurrent effects on the water relations of Jeffrey pine and greenleaf manzanita (Arctostaphylos patula Greene). In 1996, plant-available water in the 75 cm thick soil was depleted by late June, with soil water potential (ψsoil) <–2.2 MPa, but below 75 cm, bedrock water potential (ψbedrock) was still > –2.2 MPa. Thus, the bedrock, not the soil, supplied water to plants for the remainder of the dry season. Higher values of, and smaller fluctuations in, seasonal predawn pressure potential (ψpredawn) for Jeffrey pine indicated that it is deeply rooted, whereas active roots of greenleaf manzanita were interpreted to be mostly within the upper 100 cm. The extra rooting volume supplied by weathered bedrock is especially important to pine relative to manzanita.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Roger F. Walker

Broadcast fertilization with an array of amendments was investigated for its capacity to stimulate growth and enhance nutrition of a three-year-old Jeffrey pine (Pinus jeffreyiGrev. & Balf.) plantation growing on an acidic Sierra Nevada surface mine. Four formulations that differed in N source, duration of release, and the suite of nutrients provided were evaluated, with each applied using four rates. Free Flow 29-3-4, a conventional amendment featuring urea as its near exclusive N source, and High N 22-4-6, a controlled release formulation containing ammoniacal, nitrate, and urea N, were the most stimulatory while an organic formulation relying exclusively on a municipal biosolid N source, Milorganite 6-2-0, was the least so. The lowest application rates employed were inadequate while the most advantageous was not the highest rate for any formulation. Foliar analysis revealed that improved N nutrition was probably critical in the favorable growth responses to fertilization, that of P was a likely contributor, and amelioration of potential Mn toxicity may have assumed an accessory role.


2001 ◽  
Vol 17 (3) ◽  
pp. 431-447 ◽  
Author(s):  
SHALINI PANDIT ◽  
B. C. CHOUDHURY

Pollinator visitation to, and the reproductive success of, Sonneratia caseolaris (Sonneratiaceae) and Aegiceras corniculatum (Myrsinaceae) was investigated in a mangrove forest in India. S. caseolaris was shown to be primarily outcrossed and A. corniculatum was shown to be a selfing species. The flowers of both plant species attracted several diurnal and nocturnal visitors. Earlier reports had indicated that S. caseolaris flowered for one night and was exclusively night-pollinated. But flowers of this species were found to be in bloom both at night and during the day, and diurnal visitors to the flowers were more diverse and frequent than nocturnal ones. This was related to the higher volume and energy value of nectar in the morning. The effects of time of day and temperature on visitation rates were quantified. The importance of visitors to plant reproductive success was investigated via controlled visitor-exclusion experiments. Pollinators were expected to be more important for the outcrossing species than for the selfing species, and this was confirmed by the results of the exclusion experiments. In S. caseolaris reproductive success was determined both by pollinator availability and the intensity of flower and fruit predation, while in A. corniculatum it is likely to be resource limited.


2017 ◽  
Vol 26 (12) ◽  
pp. 1030 ◽  
Author(s):  
Andrew H. Lybbert ◽  
Justin Taylor ◽  
Alysa DeFranco ◽  
Samuel B. St Clair

Wildfire can drastically affect plant sexual reproductive success in plant–pollinator systems. We assessed plant reproductive success of wind, generalist and specialist pollinated plant species along paired unburned, burned-edge and burned-interior locations of large wildfires in the Mojave Desert. Flower production of wind and generalist pollinated plants was greater in burned landscapes than adjacent unburned areas, whereas specialist species responses were more neutral. Fruit production of generalist species was greater in burned landscapes than in unburned areas, whereas fruit production of wind- and specialist-pollinated species showed no difference in burned and unburned landscapes. Plants surviving in wildfire-disturbed landscapes did not show evidence of pollination failure, as measured by fruit set and seed:ovule ratios. Generalist- and specialist-plant species established in the interior of burned landscapes showed no difference in fruit production than plants established on burned edges suggesting that pollination services are conserved with increasing distance from fire boundaries in burned desert landscapes. Stimulation of plant reproduction in burned environments due to competition release may contribute to the maintenance of pollinator services and re-establishment of the native plant community in post-fire desert environments.


Sign in / Sign up

Export Citation Format

Share Document