Reproductive success of wind, generalist, and specialist pollinated plant species following wildfire in desert landscapes

2017 ◽  
Vol 26 (12) ◽  
pp. 1030 ◽  
Author(s):  
Andrew H. Lybbert ◽  
Justin Taylor ◽  
Alysa DeFranco ◽  
Samuel B. St Clair

Wildfire can drastically affect plant sexual reproductive success in plant–pollinator systems. We assessed plant reproductive success of wind, generalist and specialist pollinated plant species along paired unburned, burned-edge and burned-interior locations of large wildfires in the Mojave Desert. Flower production of wind and generalist pollinated plants was greater in burned landscapes than adjacent unburned areas, whereas specialist species responses were more neutral. Fruit production of generalist species was greater in burned landscapes than in unburned areas, whereas fruit production of wind- and specialist-pollinated species showed no difference in burned and unburned landscapes. Plants surviving in wildfire-disturbed landscapes did not show evidence of pollination failure, as measured by fruit set and seed:ovule ratios. Generalist- and specialist-plant species established in the interior of burned landscapes showed no difference in fruit production than plants established on burned edges suggesting that pollination services are conserved with increasing distance from fire boundaries in burned desert landscapes. Stimulation of plant reproduction in burned environments due to competition release may contribute to the maintenance of pollinator services and re-establishment of the native plant community in post-fire desert environments.

Author(s):  
Martin Andrzejak ◽  
Harald Auge ◽  
Lotte Korell ◽  
Tiffany Knight

Climate change has the potential to alter plant reproductive success directly and indirectly through disruptions in animal pollination. Climate models project altered seasonal precipitation patterns and thus the effects of climate change on available resources and pollination services will depend on the season. Plants have evolved reproductive strategies to minimize pollen and resource limitations, and therefore we expect that the disruption of climate change might cause plants to be more pollen limited in seasons that become wetter than they were historically. In this study, we conducted a pollen supplementation experiment within the Global Change Experiment Facility (GCEF) in Central Germany. The GCEF experimentally manipulates future climate based on a realistic scenario of climate change for the region (drier summers and wetter springs and falls) in a native grassland ecosystem. We quantified seed production of two perennial species Dianthus carthusianorum and Scabiosa ochroleuca in response to pollination treatments (control, supplement), climate treatments (ambient and future) and season (summer and fall). Dianthus carthusianorum produced more seeds in future climate conditions independent of the season, but only when given supplemental pollen. Both species showed an increased reproduction in summer compared to the fall. We did not find any evidence for our expectation of higher pollen limitation in the future climate and fall season (i.e. no three-way interaction pollination x season x climate), which might be explained by the high drought tolerance and generalized pollination of our focal plant species. We conclude that plant reproductive success might be limited by the services of animal pollinators in future climates, and have many suggestions for future studies that are necessary to understand the context-dependence and underlying mechanisms of plant reproductive responses to climate.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Carlos Hernández‐Castellano ◽  
Anselm Rodrigo ◽  
José María Gómez ◽  
Constantí Stefanescu ◽  
Juan Antonio Calleja ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Vinicius AG Bastazini ◽  
Vanderlei J Debastiani ◽  
Bethânia O Azambuja ◽  
Paulo R Guimarães ◽  
Valério D Pillar

SummaryUnderstanding cascading effects of species loss is a major challenge for ecologists. Traditionally, the robustness of ecological networks has been evaluated based on simulation studies where primary extinctions occur at random or as a function of species specialization, ignoring other important biological factors. Here, we estimate the robustness of a seed dispersal network from a grassland–forest mosaic in southern Brazil, simulating distinct scenarios of woody plant species extinction, including scenarios where species are eliminated based on their evolutionary and functional distinctiveness. Our results suggest that the network is more robust when species are eliminated based on their evolutionary uniqueness, followed by random extinctions, the extinction of the most specialist species, functional distinctiveness and, at last, when the most generalist species are sequentially eliminated. Our results provide important information for grassland–forest mosaic management, as they indicate that loss of generalist species and functional diversity makes the system more likely to collapse.


2020 ◽  
Vol 68 (1) ◽  
pp. 26
Author(s):  
E. L. Eakin-Busher ◽  
P. G. Ladd ◽  
J. B. Fontaine ◽  
R. J. Standish

Plant species conservation relies on their reproductive success and likelihood of population persistence. Knowledge of plant mating systems, particularly the relationship between plants and their pollinators, is fundamental to inform conservation efforts. This knowledge could be critical for prioritising efforts in human-dominated fragmented landscapes such as the world’s biodiversity hotspots, where reproductive success can be compromised due to habitat loss, limited access to pollinators or other factors. Yet, fundamental data on plant mating systems are lacking for many Australian plants. Here we determined the mating systems of native plant species growing in native woodland fragments within Perth’s urban landscape in south-western Australia. We manipulated insect access to flowers and pollen transfer on five locally common native species, then observed floral visitors and examined reproductive success. Hemiandra pungens and Patersonia occidentalis had mixed mating systems with some ability to self-pollinate, whereas Dianella revoluta and Jacksonia sericea were reliant on insects for outcross pollination. The fruits and seeds produced by Tricoryne elatior were too low to draw conclusions about its mating system. The introduced honey bee (Apis mellifera) was the sole visitor to the mixed mating species, whereas native bees visited D. revoluta and J. sericea (one bee species each). Overall, our data suggest that D. revoluta and J. sericea are more vulnerable to fragmentation than H. pungens and P. occidentalis. Although insects contributed significantly to the reproductive output of the two former plant species, our observations suggested low frequency and richness of insect visitors to these urban fragments. More research is required to determine the generality of our findings. A comparative study in larger native woodland fragments would help estimate the effect of fragmentation on insect pollinators and consequences for the insect-reliant plant species.


Ecology ◽  
2020 ◽  
Vol 101 (7) ◽  
Author(s):  
Carlos Hernández‐Castellano ◽  
Anselm Rodrigo ◽  
José María Gómez ◽  
Constantí Stefanescu ◽  
Juan Antonio Calleja ◽  
...  

2017 ◽  
Author(s):  
Vinicius A. G. Bastazini ◽  
Vanderlei J. Debastiani ◽  
Bethânia O. Azambuja ◽  
Paulo R. Guimarães ◽  
Valério D. Pillar

SummaryUnderstanding cascading effects of species loss has become a major challenge for ecologists. Traditionally, the robustness of ecological networks has been evaluated based on simulation studies where primary extinctions occur at random or as a function of species specialization, ignoring other important biological factors. Here, we estimate the robustness of a seed dispersal network from a grassland–forest mosaic in southern Brazil, simulating distinct scenarios of woody plant species extinction, including scenarios where species are eliminated based on their evolutionary and functional distinctiveness. Our results suggest that the network is more robust when species are eliminated based on their evolutionary uniqueness, followed by random extinctions, the extinction of the most specialist species, functional distinctiveness and, at last, when the most generalist species are sequentially eliminated. Our results provide important information for grassland–forest mosaic management, as they indicate that loss of generalist species and functional diversity makes the system more likely to collapse.


2021 ◽  
Author(s):  
Alfonso Allen-Perkins ◽  
María Hurtado ◽  
David García-Callejas ◽  
Oscar Godoy ◽  
Ignasi Bartomeus

Ecological networks are a widely used tool to understand the dynamics of ecological communities in which plants interact with their pollinator counterparts. However, while most mutualistic networks have been defined at the species level, ecological processes, such as pollination, take place at the individual level. This recognition has led to the development of individual-based networks, yet current approaches only account for individuals of a single plant species due to conceptual and mathematical limitations. Here, we introduce a multilayer framework designed to depict the conspecific and heterospecific pollen flows mediated by floral visitors among plant individuals belonging to different species. Pollen transfer is modeled as a transport-like system, where an ensemble of conspecific plant-pollinator “circuits” are coupled through pollinators. With this physical conceptualization of ecological processes, we investigate how the reproductive success of plant individuals is affected by the overall dynamics of the whole multilayer network (macrostructure), as well as by their local position within the network (mesostructure). To illustrate this multiscale analysis, we apply it to a dataset of nine well-resolved individual plant-pollinator interaction networks from annual plant grasslands. Our results show that the resulting individual-based networks are highly modular, with insect visitors effectively connecting individuals of the same and different plant species. We also obtain empirical evidence that network structure is critical for modulating individual plant reproduction. In particular, the mesoscale level is the best descriptor of plant reproductive success, as it integrates the net effect of local heterospecific and conspecific interactions on seed production of a given individual. We provide a simple, but robust set of metrics to scale down network ecology to functioning properties at the individual level, where most ecological processes take place, hence moving forward the description and interpretation of multitrophic communities across scales.


2019 ◽  
Vol 164 ◽  
pp. 1-6
Author(s):  
Andrêsa Suana Argemiro Alves ◽  
André Luiz Borba do Nascimento ◽  
Ulysses Paulino Albuquerque ◽  
Cibele Cardoso Castro

Sign in / Sign up

Export Citation Format

Share Document