scholarly journals Bound-states and polarized charged zero modes in three-dimensional topological insulators induced by a magnetic vortex

2013 ◽  
Vol 86 (11) ◽  
Author(s):  
J.M. Fonseca ◽  
W.A. Moura-Melo ◽  
A.R. Pereira
2016 ◽  
Vol 119 (19) ◽  
pp. 193903 ◽  
Author(s):  
Dimitrios Andrikopoulos ◽  
Bart Sorée ◽  
Jo De Boeck

SPIN ◽  
2011 ◽  
Vol 01 (01) ◽  
pp. 33-44 ◽  
Author(s):  
SHUN-QING SHEN ◽  
WEN-YU SHAN ◽  
HAI-ZHOU LU

We present a general description of topological insulators from the point of view of Dirac equations. The Z2 index for the Dirac equation is always zero, and thus the Dirac equation is topologically trivial. After the quadratic term in momentum is introduced to correct the mass term m or the band gap of the Dirac equation, i.e., m → m − Bp2, the Z2 index is modified as 1 for mB > 0 and 0 for mB < 0. For a fixed B there exists a topological quantum phase transition from a topologically trivial system to a nontrivial system when the sign of mass m changes. A series of solutions near the boundary in the modified Dirac equation is obtained, which is characteristic of topological insulator. From the solutions of the bound states and the Z2 index we establish a relation between the Dirac equation and topological insulators.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


Sign in / Sign up

Export Citation Format

Share Document