THE NEXT STEP IN LEPTONIC DECAYS OF ETA AND KL BOUND STATES

1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.

2006 ◽  
Vol 21 (21) ◽  
pp. 1657-1673 ◽  
Author(s):  
ZHI-FENG LI ◽  
WOLFGANG LUCHA ◽  
FRANZ F. SCHÖBERL

Recently an instantaneous approximation to the Bethe–Salpeter formalism for the analysis of bound states in quantum field theory has been proposed which retains, in contrast to the Salpeter equation, as far as possible the exact propagators of the bound-state constituents, extracted nonperturbatively from Dyson–Schwinger equations or lattice gauge theory. The implications of this improvement for the solutions of this bound-state equation, i.e. the spectrum of the mass eigenvalues of its bound states and the corresponding wave functions, when considering the quark propagators arising in quantum chromodynamics are explored.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Ben Freivogel ◽  
Thomas Gasenzer ◽  
Arthur Hebecker ◽  
Sascha Leonhardt

We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass mm, there are no bound states with radius below 1/m1/m (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding certain bound states. As we discuss, versions for uncharged particles and their generalizations have shortcomings. This leads us to the suggestion that one should only constrain rather than exclude bound objects. In the gravitational case, the resulting conjecture takes the sharp form of forbidding the adiabatic construction of black holes smaller than 1/m1/m. But this minimal bound-state radius remains non-trivial as M_\mathrm{P}\to \inftyMP→∞, leading us to suspect a feature of QFT rather than a quantum gravity constraint. We find support in a number of examples which we analyze at a parametric level.


2021 ◽  
Vol 24 (2) ◽  
pp. 133-144
Author(s):  
Yu. D. Chernichenko

New form factor components of two relativistic with equal masses fermions bound state in the case of a vector current are obtained. Consideration is performed within the framework of the relativistic quasipotential approach on the basis of covariant Hamiltonian formulation of quantum field theory by transition to three-dimensional relativistic configurational representation in the case of two relativistic particles with equal masses and spin 1/2.


1999 ◽  
Vol 14 (11) ◽  
pp. 1651-1662
Author(s):  
A. D. MITOV ◽  
M. N. STOILOV ◽  
D. Ts. STOYANOV

We consider a model with higher derivatives for a spinor field with Fermi-type self-interaction. The problem of two-particle bound states is investigated with the help of the Bethe–Salpeter equation. It is shown that a scalar bound state exists when the coupling constant has a very finely tuned magnitude.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


1999 ◽  
Vol 14 (28) ◽  
pp. 1961-1981 ◽  
Author(s):  
SHUHEI MANO

A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.


Sign in / Sign up

Export Citation Format

Share Document