Continuous signaling pathways instability in an electromechanical coupled model for biomembranes and nerves

2022 ◽  
Vol 95 (1) ◽  
Author(s):  
A. S. Foualeng Kamga ◽  
G. Fongang Achu ◽  
F. M. Moukam Kakmeni ◽  
P. Guemkam Ghomsi ◽  
Frank T. Ndjomatchoua ◽  
...  
Author(s):  
Tong Liu ◽  
Guofang Gong ◽  
Huayong Yang ◽  
Yuxi Chen ◽  
Xinghai Zhou

The cutterhead driving system of tunnel machine is over-actuated by redundant driving chains with inevitable load and parameter deviations. These deviations were rarely considered, and the researches on multi-motors synchronization and gear dynamics were usually isolated. In this paper, a novel electromechanical coupled model of the whole cutterhead driving system is established by connecting the vector-controlled motors via gear meshing system. Force transmissions between all coupled elements are investigated by analyzing rotational and translational dynamics, and the time-varying meshing stiffness and nonlinear backlash of both parallel pinions driving and multi-stage planetary reducer are considered. The phase and frequency features of meshing dynamics are also investigated. Comparative simulations are carried out with load and parameter deviations between multi-chains under two control structures, speed parallel control and torque master-slave control; some practical control principles are also concluded. The simulation results are verified and applied on a Φ2.5-m test rig. The consistent results indicate that, the meshing dynamics have the frequency components of carrier revolution and the meshing frequencies of both current planet and endmost pinion. Torque master-slave control could realize torque synchronization against all the adverse deviations while speed parallel control fails, and the vibration could be significantly reduced with lower rigidity in speed control.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
P Balachandran ◽  
FH Sarkar ◽  
DS Pasco

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
J Su ◽  
W Chamulitrat ◽  
W Stremmel ◽  
A Pathil

Sign in / Sign up

Export Citation Format

Share Document