scholarly journals Double and triple inclusive gluon production at mid rapidity: quantum interference in p-A scattering

Author(s):  
Tolga Altinoluk ◽  
Néstor Armesto ◽  
Alex Kovner ◽  
Michael Lublinsky
1999 ◽  
Vol 169 (4) ◽  
pp. 471 ◽  
Author(s):  
Z.D. Kvon ◽  
L.V. Litvin ◽  
V.A. Tkachenko ◽  
A.L. Aseev

2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2018 ◽  
Author(s):  
Kun Wang ◽  
Andrea Vezzoli ◽  
Iain Grace ◽  
Maeve McLaughlin ◽  
Richard Nichols ◽  
...  

We have used scanning tunneling microscopy to create and study single molecule junctions with thioether-terminated oligothiophene molecules. We find that the conductance of these junctions increases upon formation of charge transfer complexes of the molecules with tetracyanoethene, and that the extent of the conductance increase is greater the longer is the oligothiophene, i.e. the lower is the conductance of the uncomplexed molecule in the junction. We use non-equilibrium Green's function transport calculations to explore the reasons for this theoretically, and find that new resonances appear in the transmission function, pinned close to the Fermi energy of the contacts, as a consequence of the charge transfer interaction. This is an example of a room temperature quantum interference effect, which in this case boosts junction conductance in contrast to earlier observations of QI that result in diminished conductance.<br>


2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
D. Vallett ◽  
J. Gaudestad ◽  
C. Richardson

Abstract Magnetic current imaging (MCI) using superconducting quantum interference device (SQUID) and giant-magnetoresistive (GMR) sensors is an effective method for localizing defects and current paths [1]. The spatial resolution (and sensitivity) of MCI is improved significantly when the sensor is as close as possible to the current paths and associated magnetic fields of interest. This is accomplished in part by nondestructive removal of any intervening passive layers (e.g. silicon) in the sample. This paper will present a die backside contour-milling process resulting in an edge-to-edge remaining silicon thickness (RST) of &lt; 5 microns, followed by a backside GMR-based MCI measurement performed directly on the ultra-thin silicon surface. The dramatic improvement in resolving current paths in an ESD protect circuit is shown as is nanometer scale resolution of a current density peak due to a power supply shortcircuit defect at the edge of a flip-chip packaged die.


Sign in / Sign up

Export Citation Format

Share Document